1
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
3
|
Wu T, Chen J, Jiao C, Hu H, Wu Q, Xie Y. Identification of Long Non-Coding RNAs and Their Target Genes from Mycelium and Primordium in Model Mushroom Schizophyllum commune. MYCOBIOLOGY 2022; 50:357-365. [PMID: 36404904 PMCID: PMC9645281 DOI: 10.1080/12298093.2022.2116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Schizophyllum commune has emerged as the most promising model mushroom to study developmental stages (mycelium, primordium), which are two primary processes of fruit body development. Long non-coding RNA (lncRNA) has been proved to participate in fruit development and sex differentiation in fungi. However, potential lncRNAs have not been identified in S. commune from mycelium to primordium developmental stages. In this study, lncRNA-seq was performed in S. commune and 61.56 Gb clean data were generated from mycelium and primordium developmental stages. Furthermore, 191 lncRNAs had been obtained and a total of 49 lncRNAs were classified as differently expressed lncRNAs. Additionally, 26 up-regulated differently expressed lncRNAs and 23 down-regulated between mycelium and primordia libraries were detected. Further, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed lncRNAs target genes from the MAPK pathway, phosphatidylinositol signal, ubiquitin-mediated proteolysis, autophagy, and cell cycle. This study provides a new resource for further research on the relationship between lncRNA and two developmental stages (mycelium, primordium) in S. commune.
Collapse
Affiliation(s)
- Tuheng Wu
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian Chen
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Hu X, Zhang Y, Du M, Yang E. Efficient and specific DNA oligonucleotide rRNA probe-based rRNA removal in Talaromyces marneffei. Mycology 2022; 13:106-118. [PMID: 35711330 PMCID: PMC9196791 DOI: 10.1080/21501203.2021.2017045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Emerging evidence showed that lncRNAs play important roles in a wide range of biological processes of fungi such as Saccharomyces cerevisiae. However, systemic identification of lncRNAs in non-model fungi is a challenging task as the efficiency of rRNA removal has been proved to be affected by mismatches of universal rRNA-targeting probes of commercial kits, which forces deeper sequencing depth and increases costs. Here, we developed a low-cost and simple rRNA depletion method (rProbe) that could efficiently remove more than 99% rRNA in both yeast and mycelium samples of Talaromyces marneffei. The efficiency and robustness of rProbe were demonstrated to outperform the Illumina Ribo-Zero kit. Using rProbe RNA-seq, we identified 115 differentially expressed lncRNAs and constructed lncRNA-mRNA co-expression network related to dimorphic switch of T. marneffei. Our rRNA removal method has the potential to be a useful tool to explore non-coding transcriptomes of non-model fungi by adjusting rRNA probe sequences species specifically.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Zhang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
The long non-coding RNA landscape of Candida yeast pathogens. Nat Commun 2021; 12:7317. [PMID: 34916523 PMCID: PMC8677757 DOI: 10.1038/s41467-021-27635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a poorly studied class of transcripts with emerging roles in key cellular processes. Despite efforts to characterize lncRNAs across a wide range of species, these molecules remain largely unexplored in most eukaryotic microbes, including yeast pathogens of the Candida clade. Here, we analyze thousands of publicly available sequencing datasets to infer and characterize the lncRNA repertoires of five major Candida pathogens: Candida albicans, Candida tropicalis, Candida parapsilosis, Candida auris and Candida glabrata. Our results indicate that genomes of these species encode hundreds of lncRNAs that show levels of evolutionary constraint intermediate between those of intergenic genomic regions and protein-coding genes. Despite their low sequence conservation across the studied species, some lncRNAs are syntenic and are enriched in shared sequence motifs. We find co-expression of lncRNAs with certain protein-coding transcripts, hinting at potential functional associations. Finally, we identify lncRNAs that are differentially expressed during infection of human epithelial cells for four of the studied species. Our comprehensive bioinformatic analyses of Candida lncRNAs pave the way for future functional characterization of these transcripts. Long non-coding RNAs (lncRNAs) play roles in key cellular processes, but remain largely unexplored in fungal pathogens such as Candida. Here, Hovhannisyan and Gabaldón analyze thousands of sequencing datasets to infer and characterize the lncRNA repertoires of five Candida species, paving the way for their future functional characterization.
Collapse
|
6
|
Li WJ, Wei D, Han HL, Song YJ, Wang Y, Xu HQ, Smagghe G, Wang JJ. lnc94638 is a testis-specific long non-coding RNA involved in spermatozoa formation in Zeugodacus cucurbitae (Coquillett). INSECT MOLECULAR BIOLOGY 2021; 30:605-614. [PMID: 34318563 DOI: 10.1111/imb.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) generally display tissue-specific distributions, and testis-specific lncRNAs form the highest proportion of lncRNAs in many species. Here, we presented a detailed analysis of testis-specific lncRNAs in the melon fly, Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. Most testis-specific lncRNAs were found to be long intergenic non-coding RNAs (lincRNA). The size distribution of these lncRNAs ranged between 600 and 1000 nucleotides. Testis-specific lncRNAs that harboured one isoform number and two exons were the most abundant. Compared to other male tissues, the testis had more highly expressed lncRNAs. The quantitative real-time polymerase chain reaction results of 10 randomly selected testis-specific lncRNAs showed expression patterns consistent with RNA-seq data. Further analysis of the most highly expressed testis-specific lncRNA, lnc94638, was undertaken. Fluorescent in situ hybridization assays localized lnc94638 to the apical region of the testis that contains mature spermatozoa. RNA interference-mediated knockdown of lnc94638 expression reduced spermatozoa numbers and impaired the fertility of Z. cucurbitae male. This study provides a catalogue of testis-specific lncRNAs, shows that the testis-specific lnc94638 is involved in spermatogenesis and has the potential to be used for treating male sterility.
Collapse
Affiliation(s)
- W-J Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - D Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - H-L Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Y-J Song
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Y Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - H-Q Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - G Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - J-J Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Ye G, Zhang L, Zhou X. Long noncoding RNAs are potentially involved in the degeneration of virulence in an aphid-obligate pathogen, Conidiobolus obscurus (Entomophthoromycotina). Virulence 2021; 12:1705-1716. [PMID: 34167451 PMCID: PMC8237998 DOI: 10.1080/21505594.2021.1938806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Virulence attenuation frequently occurs in in vitro culturing of pathogenic microbes. In this study, we investigated the total putative long noncoding RNAs (lncRNAs) in an aphid-obligate pathogen, Conidiobolus obscurus, and screened the differentially expressed (DE) lncRNAs and protein-coding genes involved in the virulence decline. The virulence was significantly attenuated after eight subculturing events, in which the median lethal concentration of the conidia ejected from mycelial mats relative to the bamboo aphid, Takecallis taiwanus, increased from 36.1 to 126.1 conidia mm–2, four days after inoculation. In total, 1,252 lncRNAs were identified based on the genome-wide transcriptional analysis. By characterizing their molecular structures and expression patterns, we found that the lncRNAs possessed shorter transcripts, lower expression, and fewer exons than did protein-coding genes in C. obscurus. A total of 410 DE genes of 329 protein-coding genes and 81 lncRNAs were identified. The functional enrichment analysis showed the DE genes were enriched in peptidase activity, protein folding, autophagy, and metabolism. Moreover, target prediction analysis of the 81 lncRNAs revealed 3,111 cis-regulated and 23 trans-regulated mRNAs, while 121 DE lncRNA-mRNA pairs were possibly involved in virulence decline. Moreover, the DE lncRNA-regulated target genes mainly encoded small heat shock proteins, secretory proteins, transporters, autophagy proteins, and other stress response-related proteins. This implies that the decline in virulence regulated by lncRNAs was likely associated with the environmental stress response of C. obscurus. Hence, these findings can provide insights into the lncRNA molecules of Entomophthoromycotina, with regards to virulence regulators of entomopathogens.
Collapse
Affiliation(s)
- Guofang Ye
- Forest Protection Department, State Key Laboratory of Subtropical Silviculture, National Joint Local Engineering Laboratory of Biopesticide High-efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Lvhao Zhang
- Forest Protection Department, State Key Laboratory of Subtropical Silviculture, National Joint Local Engineering Laboratory of Biopesticide High-efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiang Zhou
- Forest Protection Department, State Key Laboratory of Subtropical Silviculture, National Joint Local Engineering Laboratory of Biopesticide High-efficient Preparation, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose of Review
Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi.
Recent Findings
Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs.
Summary
Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.
Collapse
|
9
|
Wang Z, Jiang Y, Wu H, Xie X, Huang B. Genome-Wide Identification and Functional Prediction of Long Non-coding RNAs Involved in the Heat Stress Response in Metarhizium robertsii. Front Microbiol 2019; 10:2336. [PMID: 31649657 PMCID: PMC6794563 DOI: 10.3389/fmicb.2019.02336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a significant role in stress responses. To date, only a few studies have reported the role of lncRNAs in insect-pathogenic fungi. Here, we report a genome-wide transcriptional analysis of lncRNAs produced in response to heat stress in Metarhizium robertsii, a model insect-pathogenic fungus, using strand-specific RNA sequencing. A total of 1655 lncRNAs with 1742 isoforms were identified, of which 1081 differentially expressed (DE) lncRNAs were characterized as being heat responsive. By characterizing their genomic structures and expression patterns, we found that the lncRNAs possessed shorter transcripts, fewer exons, and lower expression levels than the protein-coding genes in M. robertsii. Furthermore, target prediction analysis of the lncRNAs revealed thousands of potential DE lncRNA–messenger RNA (mRNA) pairs, among which 5381 pairs function in the cis-regulatory mode. Further pathway enrichment analysis of the corresponding cis-regulated target genes showed that the targets were significantly enriched in the following biological pathways: the Hippo signaling pathway and cell cycle. This finding suggested that these DE lncRNAs control the expression of their corresponding neighboring genes primarily through environmental information processing and cellular processes. Moreover, only 26 trans-regulated lncRNA–mRNA pairs were determined. In addition, among the targets of heat-responsive lncRNAs, two classic genes that may be involved in the response to heat stress were also identified, including hsp70 (XM_007821830 and XM_007825705). These findings expand our knowledge of lncRNAs as important regulators of the response to heat stress in filamentous fungi, including M. robertsii.
Collapse
Affiliation(s)
- Zhangxun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China.,School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuanyuan Jiang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China.,School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hao Wu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Xiangyun Xie
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|