1
|
Zhou X, Yuan H, Ye N, Rong C, Li Y, Jiang X, Cao H, Huang Y. CYP4G subfamily genes mediate larval integument development in Spodoptera frugiperda. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae115. [PMID: 38783401 DOI: 10.1093/jee/toae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Cytochrome P450 (CYP) 4G subfamily is closely related to the synthesis of cuticular hydrocarbons, leading to the enhanced desiccation and insecticide resistance of pests. However, functions of CYP4Gs in larval integument development remain unknown in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is a major transboundary migratory pest and become a common pest in China. On the basis of the genome and transcriptome datasets of S. frugiperda, CYP4G74, CYP4G75, CYP4G108, and CYP4G109 were identified, which contained the conserved domains of P450s and CYP4Gs. The spatial and temporal expression analysis showed that CYP4G74 and CYP4G75 were significantly highly expressed in adults and larval integuments, while CYP4G108 and CYP4G109 had low expressions in larval integuments. After silencing CYP4G74 and CYP4G75 by RNA interference, abnormal integument development occurred in larvae, some of which became smaller and dead, indicating important roles of CYP4G74 and CYP4G75 in the synthesis and development of integuments. The results clarify the functions of CYP4Gs in S. frugiperda and provide potential targets for the control of this pest.
Collapse
Affiliation(s)
- Xue Zhou
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao Yuan
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Nuojun Ye
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changfeng Rong
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei 230036, China
| | - Xingchuan Jiang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yong Huang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Chen T, Zhou X, Wu J, Xing G, Cao H, Huang Y. Expression profile and function analysis of MsCSP17 and MsCSP18 in the larval development of Mythimna separata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:676-683. [PMID: 37674285 DOI: 10.1017/s0007485323000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Chemosensory proteins (CSPs) were necessary for insect sensory system to perform important processes such as feeding, mating, spawning, and avoiding natural enemies. However, their functions in non-olfactory organs have been poorly studied. To clarify the function of CSPs in the development of Mythimna separata (Walker) larvae, two CSP genes, MsCSP17 and MsCSP18, were identified from larval integument transcriptome dataset. Both of MsCSP17 and MsCSP18 contained four conserved cysteine sites (C × (6)-C × (18)-C × (2)-C), with a signal peptide at the N-terminal. RT-qPCR analysis showed that MsCSP17 and MsCSP18 have different expression patterns among different developmental stages and tissues. MsCSP17 was highly expressed in 1st-4th instar larvae, and MsCSP18 had high expression in adults. Both genes were expressed highly in larval head, thorax, integument and mandible. Moreover, both of MsCSP17 and MsCSP18 were lowly expressed in larval integuments when larvae molted for 6 h and 9 h from 3rd to 4th instar, but highly at the beginning and end phase during molting. After injection of dsMsCSP17 and dsMsCSP18, the expression levels of two genes decreased significantly, with the body weight of larvae decreased, the mortality increased, and the eclosion rate decreased. It was suggested that MsCSP17 and MsCSP18 contributed to the development of M. separata larvae.
Collapse
Affiliation(s)
- Tingting Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xue Zhou
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Jing Wu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
3
|
Li F, Xing G, Li Y, Chen P, Hu Q, Chen M, Li Y, Cao H, Huang Y. Expressions and functions of RR-1 cuticular protein genes in the integument of Mythimna separata. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:963-972. [PMID: 36964708 DOI: 10.1093/jee/toad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2023]
Abstract
As the most outer layer between itself and the environment, integuments are necessary for insects with various important functions. Cuticular proteins (CPs) are the main components in integuments, while the functions of CP genes remain unknown in Mythimna separata (Walker), which is a devastating agricultural pest. In this study, 79 CP genes were identified from the transcriptomes of larval integuments, 57 of which were from the family containing conserved Rebers & Riddiford (R&R) consensus (CPR family). Amongst these CPRs, 44 genes belonged to the subfamily with RR-1 motif (RR-1 genes) and clustered into three clades, with the top 15 most abundant RR-1 genes identified based on fragments per kilobase per million mapped fragments (FPKM) values. RT-qPCR analysis showed that most of RR-1 genes such as MsCPR1-4 were highly expressed at larval stages and in their integuments. The expression levels of RR-1 genes were generally decreased at the beginning but increased at the late stage of molting process. RNAi was applied for six RR-1 genes, and MsCPR1-4 were knocked down significantly. Silence of MsCPR2 resulted in abnormal integument formed after molting, while knockdown of MsCPR3 and MsCPR4 led to failure of molting, respectively. No phenotype was obtained for the RNAi of MsCPR1. Therefore, the expression of RR-1 genes and their functions were analyzed in the development of integuments in M. separata, providing new insights of RR-1 genes and potential targets for the development of growth regulators and new insecticides for M. separata.
Collapse
Affiliation(s)
- Fuyuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yixuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Peng Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Qin Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Ming Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei, PR China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
4
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
5
|
Li M, Li RR, Zhao CJ, Lei T, Wang GB, Hu YH. Transcriptome analysis of Mythimna separata: De novo assembly and detection of genes related to beta-cypermethrin resistance. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21921. [PMID: 35635368 DOI: 10.1002/arch.21921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The oriental armyworm Mythimna separata (Walker) is a devastating pest of cereal crops mainly in Asia and Oceania and recently become resistant to beta-cypermethrin (beta-CP). However, molecular biological studies of its response to beta-CP are scarce, and related genomic information is not available. In this study, we sequenced and de novo assembled the transcriptome of beta-CP susceptible M. separata (MsS-whole, abbr. MsS-W). A total of 30,486 unigenes were obtained, with an N50 length of 506 bp. A number of 21,051 unigenes were matched to public databases, of which 10,107 were classified into 59 gene ontology subcategories, 5792 were assigned into 25 clusters of orthologous groups of proteins subgroups and 12,123 were assigned to 257 Kyoto Encyclopedia of Genes and Genomes pathways. A total of 729 simple sequence repeats were detected. In addition, a total of 323 cytochrome P450-associated sequences from nine lepidopterous species, of which 130 were from M. separata, were analyzed using the maximum likelihood method and Bayesian inference. Among the 130 cytochrome P450-associated sequences from M. separata, 60 were dropped into CYP3 clan, which is associated with metabolizing xenobiotics and plant natural compounds. Furthermore, the beta-CP susceptible (MsS-2) and resistant (MsR-2) M. separata population transcriptomes were sequenced. Certain critical genes involved in beta-CP detoxification were detected and verified by quantitative real-time polymerase chain reaction. Collectively, our results provided a basis for further studies of the molecular mechanism of insecticide resistance in M. separata.
Collapse
Affiliation(s)
- Min Li
- Department of Biology, Taiyuan Normal University, Jinzhong, Shanxi, China
- Department of Agricultural Entomology, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rong-Rong Li
- Department of Biology, Taiyuan Normal University, Jinzhong, Shanxi, China
| | - Chen-Jing Zhao
- Department of Biology, Taiyuan Normal University, Jinzhong, Shanxi, China
| | - Ting Lei
- Department of Biology, Taiyuan Normal University, Jinzhong, Shanxi, China
| | - Guo-Bin Wang
- Department of Biology, Taiyuan Normal University, Jinzhong, Shanxi, China
| | - Yan-Hua Hu
- Institute of Entomology, Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Zhao H, Zhu Z, Xing G, Li Y, Zhou X, Wang J, Li G, Cao H, Huang Y. Deformed Mediated Larval Incisor Lobe Development Causes Differing Feeding Behavior between Oriental Armyworm and Fall Armyworm. INSECTS 2022; 13:insects13070594. [PMID: 35886770 PMCID: PMC9320430 DOI: 10.3390/insects13070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/10/2022]
Abstract
Mandibular incisor lobes are important for insect feeding behavior, living habits and niche. However, the molecular regulation of insect incisor lobe development remains unknown. In this study, we found that two maize pests, oriental armyworm Mythimna separata and fall armyworm Spodoptera frugiperda, have different feeding patterns in maize, which are closely associated with the different development patterns of their incisor lobes. Different from first to sixth instar S. frugiperda, which feed on leaf tissues and whorls with sharp incisor lobes, older instars of M. separata feed from leaf margins with no incisor lobes. Hox gene Deformed (Dfd) is important for head appendages, but its function in incisor lobe development is not clear. Here, Dfds were identified from two armyworm species, and both were expressed highly in heads and eggs. Interestingly, the expression levels of MsDfd were relatively high in larval mandibles and decreased dramatically from fourth-instar mandibles in M. separata. Knockdown of MsDfd resulted in malformed mandibles with no incisor lobe in M. separata, making the larvae unable to perform window-feeding. However, RNAi of SfDfd did not affect the mandibles and window-feeding pattern of S. frugiperda, indicating the different roles of Dfd in these two species. Moreover, the mortality of new first instar M. separata increased after feeding dsMsDfd but did not for S. frugiperda feeding dsSfDfd. These findings revealed that Dfd mediated the larval mandibular incisor lobe morphology, affecting its feeding pattern in M. separata, broadening the knowledge of Dfd functions in insect mandibles and feeding behavior.
Collapse
Affiliation(s)
- Hailong Zhao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Zeng Zhu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei 230036, China;
| | - Xue Zhou
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Jingjing Wang
- Plant Protection Station of Anhui Province, Hefei 230061, China;
| | - Guiting Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (H.Z.); (Z.Z.); (G.X.); (X.Z.); (G.L.); (H.C.)
- Correspondence:
| |
Collapse
|
7
|
Xu L, Yi SC, Li JY, Tong Y, Xie C, Zeng DQ, Tang WW. Itol A May Affect the Growth and Development of Spodoptera frugiperda through Hijacking JHBP and Impeding JH Transport. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3151-3161. [PMID: 35239350 DOI: 10.1021/acs.jafc.1c08083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isoryanodane and ryanodane diterpenes have a carbon skeleton correlation in structures, and their natural product-oxidized diterpenes show antifeedant and insecticidal activities against Hemiptera and Lepidoptera. While ryanodine mainly acts on the ryanodine receptor (RyR), isoryanodane does not. In this study, we demonstrated that itol A, an isoryanodane diterpenoid, could significantly downregulate the expression level of juvenile hormone-binding protein (JHBP), which plays a vital role in JH transport. RNAi bioassay indicated that silencing the Spodoptera frugipreda JHBP (SfJHBP) gene decreased itol A activity, which confirmed the developmental phenotypic observation. Parallel reaction monitoring (PRM) further confirmed that itol A affected JHBP's expression abundance. Although JHBP is not proven as the direct or only target of itol A, we confirmed that itol A's action effect depends largely on JHBP and that JHBP is a potential target of itol A. We present foundational evidence that itol A inhibits the growth and development of Spodoptera frugiperda mainly through hijacking JHBP.
Collapse
Affiliation(s)
- Lin Xu
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Shan-Chi Yi
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiu-Ying Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yao Tong
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cong Xie
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Dong-Qiang Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wen-Wei Tang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
8
|
Xin Y, Chen N, Wang Y, Ni R, Zhao H, Yang P, Li M, Qiu X. CYP4G8 is responsible for the synthesis of methyl-branched hydrocarbons in the polyphagous caterpillar of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103701. [PMID: 34890799 DOI: 10.1016/j.ibmb.2021.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Insect cuticular hydrocarbons (CHCs) have dual functions as physical barrier and chemical signals. The last step of CHC biosynthesis is known to be catalyzed by cytochrome P450 CYP4G in a number of insects. Until recently, studies on CYP4Gs in the context of functional evolution are rare. In this study, we analyzed sequence similarity and temporal-spatial expression patterns of the five CYP4G genes in the cotton bollworm Helicoverpa armigera, an important agricultural pest and also typical representative of lepidopteran insects. Moreover, the CRISPR/Cas9-induced knockout was used to clarify the roles of the five CYP4Gs in CHC biosynthesis. Temporal-spatial expression patterns revealed that CYP4G8 was highly expressed at all developmental stages and in most tissues examined. Larvae with CYP4G8 knocked out could not produce methyl-branched CHCs and failed to pupate, while larvae with the other four CYP4G genes knocked out (4G1-type-KO) showed no significant changes in their CHC profiles, weight gain and survival. Comparative transcriptomics revealed that knocking out CYP4G8 affected the global gene expression in larvae, especially down-regulated the expression of genes in the fatty acid biosynthetic pathway, while no significant change in 4G1-type-KO transcriptome was observed. These findings indicate that the five members of the CYP4G subfamily have undergone functional divergence: CYP4G8 maintains the essential function in CHC biosynthesis, while the function of the other four CYP4G genes remains unclear. Intriguingly, CYP4G8 has evolved to be a P450 enzyme responsible for the synthesis of larval methyl-branched hydrocarbons. The observation that CYP4G8 knockout is lethal strongly suggest that CYP4G8 may serve as a candidate target for the development of insecticidal agents for the control of cotton bollworms.
Collapse
Affiliation(s)
- Yucui Xin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongrui Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiqi Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Identification of 35 C-Type Lectins in the Oriental Armyworm, Mythimna separata (Walker). INSECTS 2021; 12:insects12060559. [PMID: 34208748 PMCID: PMC8235521 DOI: 10.3390/insects12060559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The oriental armyworm Mythimna separata is a lepidopteral agricultural pest that causes serious damage to many crops, such as maize, wheat, and sorghum. To control this pest, it is advisable to take comprehensive measures, including the use of chemical pesticides, microbial pesticides, and cultural practices. However, microbial pesticides (entomopathogens) can be eliminated by the insect immune system. C-type lectins (CTLs) are a family of pattern-recognition receptors that recognize carbohydrates and mediate immune responses. C-type lectins in the oriental armyworm have not yet been identified and characterized. In this study, a transcriptome of M. separata larvae was constructed and a total of 35 CTLs containing single or dual carbohydrate-recognition domains (CRDs) were identified from unigenes. Phylogenetic analyses, sequence alignments and structural predictions were performed. Gene expression profiles in different developmental stages, naïve larval tissues, and bacteria/fungi-challenged larvae were analyzed. Overall, our findings indicate that most dual-CRD CTLs are expressed in mid-late-stage larvae, pupae, and adults. Bacterial and fungal challenges can stimulate the expression of many CTLs in larval hemocytes, fat body, and midgut. Our data suggest the importance of CTLs in immune responses of M. separata. Abstract Insect C-type lectins (CTLs) play vital roles in modulating humoral and cellular immune responses. The oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae) is a migratory pest that causes significant economic loss in agriculture. CTLs have not yet been systematically identified in M. separata. In this study, we first constructed a transcriptome of M. separata larvae, generating a total of 45,888 unigenes with an average length of 910 bp. Unigenes were functionally annotated in six databases: NR, GO, KEGG, Pfam, eggNOG, and Swiss-Prot. Unigenes were enriched in functional pathways, such as those of signal transduction, endocrine system, cellular community, and immune system. Thirty-five unigenes encoding C-type lectins were identified, including CTL-S1~CTL-S6 (single CRD) and IML-1~IML-29 (dual CRD). Phylogenetic analyses showed dramatic lineage-specific expansions of IMLs. Sequence alignment and structural modeling identified potential ligand-interacting residues. Real-time qPCR revealed that CTL-Ss mainly express in eggs and early stage larvae, while IMLs mainly express in mid-late-stage larvae, pupae, and adults. In naïve larvae, hemocytes, fat body, and epidermis are the major tissues that express CTLs. In larvae challenged by Escherichia coli, Staphylococcus aureus, or Beauveria bassiana, the expression of different CTLs was stimulated in hemocytes, fat body and midgut. The present study will help further explore functions of M. separata CTLs.
Collapse
|