1
|
Fricaux T, Le Navenant A, Siegwart M, Rault M, Coustau C, Le Goff G. The Molecular Resistance Mechanisms of European Earwigs from Apple Orchards Subjected to Different Management Strategies. INSECTS 2023; 14:944. [PMID: 38132618 PMCID: PMC10743755 DOI: 10.3390/insects14120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
To date, apple orchards are among the most treated crops in Europe with up to 35 chemical treatments per year. Combining control methods that reduce the number of pesticide treatments is essential for agriculture and more respectful of the environment, and the use of predatory insects such as earwigs may be valuable to achieve this goal. European earwigs, Forficula auricularia (Dermaptera: Forficulidae) are considered beneficial insects in apple orchards where they can feed on many pests like aphids. The aim of this study was to investigate the potential impact of orchards' insecticide treatments on resistance-associated molecular processes in natural populations of earwigs. Because very few molecular data are presently available on earwigs, our first goal was to identify earwig resistance-associated genes and potential mutations. Using earwigs from organic, integrated pest management or conventional orchards, we identified mutations in acetylcholinesterase 2, α1 and β2 nicotinic acetylcholine receptors. In addition, the expression level of these targets and of some essential detoxification genes were monitored using RT-qPCR. Unexpectedly, earwigs collected in organic orchards showed the highest expression for acetylcholinesterase 2. Four cytochromes P450, one esterase and one glutathione S-transferases were over-expressed in earwigs exposed to various management strategies in orchards. This first study on resistance-associated genes in Forficula auricularia paves the way for future experimental studies aimed at better understanding the potential competition between natural enemies in apple orchards in order to optimize the efficiency of biocontrol.
Collapse
Affiliation(s)
- Thierry Fricaux
- Université Côte d’Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France; (T.F.); (C.C.)
| | - Adrien Le Navenant
- Avignon Université, Aix-Marseille Université, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, F-84916 Avignon, France; (A.L.N.); (M.R.)
| | - Myriam Siegwart
- INRAE, Unité PSH, Site Agroparc, F-84914 Avignon, Cedex 9, France;
| | - Magali Rault
- Avignon Université, Aix-Marseille Université, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, F-84916 Avignon, France; (A.L.N.); (M.R.)
| | - Christine Coustau
- Université Côte d’Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France; (T.F.); (C.C.)
| | - Gaëlle Le Goff
- Université Côte d’Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France; (T.F.); (C.C.)
| |
Collapse
|
2
|
Moreira LB, Lima LLR, de Sá Farias E, Carvalho GA. Response of Doru luteipes (Dermaptera: Forficulidae) to insecticides used in maize crop as a function of its life stage and exposure route. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15010-15019. [PMID: 36168013 DOI: 10.1007/s11356-022-23196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate insecticide toxicity to Doru luteipes (Scudder), a major predator of maize pests. Lethal and sublethal effects were assessed on nymphs and adults exposed to the insecticides through contact (maize leaves) and ingestion (prey eggs) routes. Tested insecticides included a biopesticide (Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV), modern (flubendiamide and metaflumizone), and older neurotoxins (imidacloprid + β-cyfluthrin). The imidacloprid/β-cyfluthrin mix was highly toxic (100% mortality) to the predator, regardless of the exposure route and predator stage. Metaflumizone caused mortality higher than 95% and 45% of nymphs and adults. Flubendiamide and SfMNPV were the least toxic insecticides, not differing from the untreated control in any of the assessed endpoints. Adult tibial length did not differ among treatments. Metaflumizone impaired egg consumption by nymphs and walking distance of adult D. luteipes. Overall, the insecticides caused a more pronounced effect on D. luteipes nymphs than on adults and were more toxic by the contact route. From these findings, flubendiamide and SfMNPV are safer for D. luteipes and should head insecticide choice in integrated pest management programs in maize.
Collapse
Affiliation(s)
- Luciano Bastos Moreira
- Department of Entomology, Universidade Federal de Lavras, PB 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | | | - Elizeu de Sá Farias
- Department of Entomology, Universidade Federal de Lavras, PB 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Geraldo Andrade Carvalho
- Department of Entomology, Universidade Federal de Lavras, PB 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
3
|
Michalko R, Gajski D, Košulič O, Khum W, Michálek O, Pekár S. Association between arthropod densities suggests dominance of top-down control of predator-prey food-webs on pear trees during winter. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Khum W, Košulič O, Birkhofer K, Michalko R. The invasive pathogenic fungus Hymenoscyphus fraxineus alters predator–herbivore–ash food webs. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|