1
|
Guan F, Xiao X, Dong R, Wang C, Jin Z, Wu S, Wu Y, Yang Y. Detection and functional validation of point mutations in acetylcholinesterase-1 associated with organophosphate resistance in field populations of Helicoverpa armigera. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae268. [PMID: 39549281 DOI: 10.1093/jee/toae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Point mutations in the acetylcholinesterase-1 gene (ace-1) have been associated with resistance to OPs in many insects. However, the presence and function of ace-1 mutations associated with OP resistance in Helicoverpa armigera (Lepidoptera: Noctuidae), a significant lepidopteran pest damaging a wide range of crops, remain largely unexplored. This study investigated resistance to the OP insecticide phoxim in 12 field populations of H. armigera from northern China in 2022, revealing low levels of resistance (2.5- to 6.7-fold). Using an amplicon sequencing approach, we screened for ace-1 mutations in 13,874 moths collected from 114 populations collected between 2006 and 2022. We found 3 amino acid substitutions (A201S, G227E, and F290V) potentially related to OP resistance. The mean frequencies of A201S, G227E, and F290V mutations were 0.0032, 0.0001, and 0.0001, respectively. To assess these mutations' role in OP resistance, we expressed wild-type and mutant AChE1 proteins in Sf9 cells. Biochemical characterization revealed a 3.1-fold and 3.3-fold increase in the I50 of chlorpyrifos-oxon for A201S and F290V mutants compared to the wild-type enzyme, correlating with a 2.9-fold and 2.7-fold decrease in the Ki value. No enzyme activity was observed in the G227E mutant, indicating that only A201S and F290V confer insensitivity to chlorpyrifos-oxon. Our study demonstrates that amplicon sequencing is an effective method for large-scale screening of resistance-associated point mutations in field populations of H. armigera and potentially other insect pests. It also identifies A201S and F290V in AChE1 as potential point mutations conferring OP resistance in field populations of H. armigera.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin Xiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rongrong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chenyang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zeng Jin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Wang P, Liu Q, Wang X, Sun T, Liu B, Wang B, Li H, Wang C, Sun W, Pan B. Point mutations in the voltage-gated sodium channel gene conferring pyrethroid resistance in China populations of the Dermanyssus gallinae. PEST MANAGEMENT SCIENCE 2024; 80:4950-4958. [PMID: 38828899 DOI: 10.1002/ps.8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Dermanyssus gallinae, the poultry red mite (PRM), is a worldwide ectoparasite posing significant economic challenges in poultry farming. The extensive use of pyrethroids for PRM control has led to the emergence of pyrethroid resistance. The objective of this study is to detect the pyrethroid resistance and explore its associated point mutations in the voltage-gated sodium channel (VGSC) gene among PRM populations in China. RESULTS Several populations of D. gallinae, namely CJF-1, CJP-2, CJP-3, CSD-4 and CLD-5, displayed varying degrees of resistance to beta-cypermethrin compared to a susceptible field population (CBP-5). Mutations of VGSC gene in populations of PRMs associated with pyrethroid resistance were identified through sequencing its fragments IIS4-IIS5 and IIIS6. The mutations I917V, M918T/L, A924G and L925V were present in multiple populations, while no mutations were found at positions T929, I936, F1534 and F1538. CONCLUSION The present study confirmed the presence of extremely high levels of pyrethroid resistance in PRM populations in China, and for the first time detected four pyrethroid resistance mutations in the VGSC gene. Identifying pyrethroid resistance in the field population of PRM in China can be achieved through screening for VGSC gene mutations as an early detection method. Our findings underscore the importance of implementing chemical PRM control strategies based on resistance evidence, while also considering the management of acaricide resistance in the control of PRMs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huan Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Wang Q, Luo C, Wang R. Insecticide Resistance and Its Management in Two Invasive Cryptic Species of Bemisia tabaci in China. Int J Mol Sci 2023; 24:ijms24076048. [PMID: 37047017 PMCID: PMC10094485 DOI: 10.3390/ijms24076048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The sweet potato whitefly Bemisia tabaci is a major agricultural pest with a wide host range throughout the world. The species designation for B. tabaci includes numerous distinct cryptic species or biotypes. Two invasive B. tabaci biotypes, MEAM1 (B) and MED (Q), were found in China at the end of the 20th century and at the beginning of the 21st century. MEAM1 (B) and MED (Q) show higher pesticide resistance levels than native strains, and the levels of resistance vary with changes in insecticide selection pressure. Recent studies have revealed metabolic resistance mechanisms and target site mutations in invasive B. tabaci strains that render them resistant to a range of insecticides and have uncovered the frequency of these resistance-related mutations in B. tabaci populations in China. Novel pest control agents, such as RNA-based pesticides and nano-pesticides, have achieved effective control effects in the laboratory and are expected to be applied for field control of B. tabaci in the future. In this review, we discuss the mechanisms of resistance developed by these invasive B. tabaci populations since their invasion into China. We also provide suggestions for ecologically sound and efficient B. tabaci control.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Mavridis K, Papapostolou KM, Ilias A, Michaelidou K, Stavrakaki M, Roditakis E, Tsagkarakou A, Bass C, Vontas J. Next-generation molecular diagnostics (TaqMan qPCR and ddPCR) for monitoring insecticide resistance in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2022; 78:4994-5001. [PMID: 36054028 DOI: 10.1002/ps.7122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insecticide resistance has developed in several populations of the whitefly Bemisia tabaci worldwide and threatens to compromise the efficacy of chemical control. The molecular mechanisms underpinning resistance have been characterized and markers associated with the trait have been identified, allowing the development of diagnostics for individual insects. RESULTS TaqMan and Droplet Digital PCR (ddPCR) assays were developed and validated, in individual and pooled whitefly samples, respectively, for the following target-site mutations: the acetylcholinesterase (ace1) F331W mutation conferring organophosphate-resistance; the voltage-gated sodium channel (vgsc) mutations L925I and T929V conferring pyrethroid-resistance; and the acetyl-CoA carboxylase (acc) A2083V mutation conferring ketoenol-resistance. The ddPCR's limit of detection (LoD) was <0.2% (i.e. detection of one heterozygote whitefly in a pool of 249 wild-type individuals). The assays were applied in 11 B. tabaci field populations from four locations in Crete, Greece. The F331W mutation was detected to be fixed or close to fixation in eight of 11 B. tabaci populations, and at lower frequency in the remaining ones. The pyrethroid-resistance mutations were detected at very high frequencies. The A2083V spiromesifen resistance mutation was detected in eight of 11 populations (frequencies = 6.16-89.56%). Spiromesifen phenotypic resistance monitoring showed that the populations tested had variable levels of resistance, ranging from full susceptibility to high resistance. A strong spiromesifen-resistance phenotype-genotype (A2083V) correlation (rs = -0.839, P = 0.002) was observed confirming the ddPCR diagnostic value. CONCLUSION The ddPCR diagnostics developed in this study are a valuable tool to support evidence-based rational use of insecticides and resistance management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Kyriaki Maria Papapostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aris Ilias
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marianna Stavrakaki
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
| | - Emmanouil Roditakis
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
- Hellenic Mediterranean University, Department of Agriculture, School of Agricultural Sciences, Heraklion, Greece
| | - Anastasia Tsagkarakou
- Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization "DIMITRA", Heraklion, Greece
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Cornwall, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
6
|
Yamanaka T, Kitabayashi S, Jouraku A, Kanamori H, Kuwazaki S, Sudo M. A feasibility trial of genomics-based diagnosis detecting insecticide resistance of the diamondback moth. PEST MANAGEMENT SCIENCE 2022; 78:1573-1581. [PMID: 34981630 DOI: 10.1002/ps.6776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insecticide resistance management has been key for crop protection for over 70 years and is increasingly important because the development of new active ingredients has decreased in recent years. By monitoring the development of resistance in a timely manner, we can effectively prolong insecticide efficacy. Genomic-based diagnosis can reliably predict resistance development if information on resistant mutations against major pesticides is available. Here, we developed a feasibility trial of genomics-based diagnosis of insecticide resistance in diamondback moth (Plutella xylostella) populations in Nagano Prefecture, Japan. Amplicon sequencing analyses using a next-generation sequencer (Illumina MiSeq) for major insecticides, including diamides, pyrethroids, Bacillus thuringiensis (Bt) toxin (Cry1Ac), organophosphates, and spinosyns, were conducted. RESULTS Mutations related to the resistance of pyrethroids, organophosphates, and diamides (flubendiamide and chlorantraniliprole) prevailed, while those of a diamide (cyantraniliprole), Bt (Cry1Ac), and spinosyns were scanty, suggesting that they are still effective. The results of the genomics-based diagnosis were generally concordant with the results of bioassays. Resistance development tendencies were generally uniform across Nagano. CONCLUSION An insecticide-resistance management campaign can be conducted in Nagano Prefecture with a quick genomic-based diagnosis in early spring while bioassay is the only option for monitoring resistances whose mutations are unavailable. Our study is the first step in the future management of insecticide resistance in all significant pests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Takehiko Yamanaka
- Research Center for Agricultural Information Technology, NARO, Tsukuba, Japan
| | | | - Akiya Jouraku
- Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | | | - Seigo Kuwazaki
- Institute of Agrobiological Sciences, NARO, Tsukuba, Japan
| | - Masaaki Sudo
- Institute for Plant Protection, NARO, Shimada, Japan
| |
Collapse
|