1
|
Xiang X, Yu S, Ofori AD, Liu S, Yang Q, Shang J. Screening of the highly pathogenic Beauveria bassiana BEdy1 against Sogatella furcifera and exploration of its infection mode. Front Microbiol 2024; 15:1469255. [PMID: 39654672 PMCID: PMC11625753 DOI: 10.3389/fmicb.2024.1469255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
The white-backed planthopper (WBPH, Sogatella furcifera) is a notorious pest affecting rice production in many Asian countries. Beauveria bassiana, as the most extensively studied and applied insect pathogenic fungus, is a type of green and safe biological control fungus compared to chemical insecticides, and it does not pose the "3R" problem. In this study, the strain BEdy1, which had better pathogenicity to WBPH, was screened out from eight strains of B. bassiana. The daily growth rate, sporulation, and germination rate of BEdy1 strain were 3.74 mm/d, 1.37 × 108 spores/cm2, and 96.00%, respectively, which were significantly better than those of other strains. At a concentration of 1 × 108 spores/mL, the BEdy1 strain exhibited the smallest LT50 value (5.12 d) against the WBPH, and it caused the highest cumulative mortality and muscardine cadaver rates of the pest, which were 77.67 and 57.78%, respectively. Additionally, BEdy1 exhibited a significant time-dose effect on WBPH. This study further investigated the pathogenic process of BEdy1. The results showed that BEdy1 invaded by penetrating the body wall of the WBPH, with its spores mostly distributed in the insect's abdominal gland pores, compound eyes on the head, and other locations. At 36 h, the germinated hyphae penetrated the insect's body wall and entered the body cavity. At 84 h, the hyphae emerged from the body wall and accumulated in the insect's abdomen, leading to a significant number of insect deaths at this stage. At 120 h, the hyphae entangled the insect's compound eyes and produced new conidia on the insect's body wall, entering a new cycle of infection. These findings indicate that BEdy1 has a strong infection ability against WBPH. In summary, this study provides a new highly pathogenic strain of B. bassiana, BEdy1, for the biological control of WBPH, which is of great significance for the green prevention and control of rice pests.
Collapse
Affiliation(s)
- Xing Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Agricultural and Rural Bureau, Jiajiang County, Leshan, China
| | | | - Shuhua Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qunfang Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jing Shang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Xu G, Li C, Gui W, Xu M, Lu J, Qian M, Zhang Y, Yang G. Colonization of Piriformospora indica enhances rice resistance against the brown planthopper Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4386-4398. [PMID: 38661024 DOI: 10.1002/ps.8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Piriformospora indica is an endophytic fungus that can promote the growth and confer resistance against diverse stresses in host plants by root colonization. However, the effects of P. indica colonization on improving plant resistance to insect pests are still less explored. The brown planthopper (BPH) Nilaparvata lugens is a serious monophagous pest that causes extensive damage to rice plants. Here, we aimed to evaluate the effects of P. indica colonization on rice resistance against BPH. RESULTS The colonization of P. indica in rice roots resisted damage from BPH. Age-stage, two-sex life table analyses showed that feeding on P. indica-colonized rice plants affected BPH's female adult longevity, oviposition period, fecundity, population parameters and population size. BPH female adults feeding on P. indica-colonized plants excreted less honeydew. P. indica colonization remarkably increased the duration of np, N2, and N3 waveform, as well as the occurrences of N1 and N2, and decreased the duration of N4-b for BPH on rice plants. Meanwhile, the weight of BPH on the colonized plants was significantly lower than the control. In addition, the feeding and oviposition preferences of BPH to P. indica-colonized plants were reduced. qRT-RCR analyses revealed that P. indica colonization induced the expressions of jasmonic acid (JA)- and salicylic acid (SA)-related genes in rice plants. CONCLUSION P. indica colonization can reduce BPH performance on rice plants with potential inhibitory effects on population growth. Collectively, these results support the potential for endophytically colonized P. indica as an effective strategy to improve insect resistance of crops. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chutong Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei Gui
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Meiqi Xu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jing Lu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Mingshi Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Liu D, Zhong Y, Li Z, Hou M. Rice varietal resistance to the vector Sogatella furcifera hinders transmission of Southern rice black-streaked dwarf virus. PEST MANAGEMENT SCIENCE 2024; 80:3684-3690. [PMID: 38459962 DOI: 10.1002/ps.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The Southern rice black-streaked dwarf virus (SRBSDV) transmitted by Sogatella furcifera constitutes a threat to sustainable rice production. However, most rice varieties are highly vulnerable to SRBSDV, whereas the occurrence of the viral disease varies significantly under field conditions. This study aimed to evaluate the potential of rice varietal resistance to S. furcifera in reducing SRBSDV transmission. RESULTS Among the five rice varieties, Zhongzheyou8 and Deyou108 exhibited high resistance to S. furcifera, Baixiangnuo33 was susceptible, and TN1 and Diantun502 were highly susceptible. The S. furcifera generally showed non-preference for and low feeding on the Zhongzheyou8 and Deyou108 plants, which may explain the resistance of these varieties to S. furcifera. Transmission of SRBSDV by S. furcifera was significantly impaired on the resistant varieties, both inoculation and acquisition rates were much lower on Zhongzheyou8 than on TN1. The short durations of S. furcifera salivation and phloem-related activities and the low S. furcifera feeding amount may explain the reduced SRBSDV inoculation and acquisition rates associated with Zhongzheyou8. Spearman's rank correlation revealed a significant negative correlation between S. furcifera resistance and SRBSDV transmission among the tested varieties. CONCLUSION The results indicate that rice varietal resistance to the vector S. furcifera hinders SRBSDV transmission, which is largely associated with the host plant selection and feeding behaviors of the vector. The current findings shed light on the management of the SRBSDV viral disease through incorporation of S. furcifera resistant rice varieties in the management protocol. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqi Zhong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengxi Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Ratnadass A, Llandres AL, Goebel FR, Husson O, Jean J, Napoli A, Sester M, Joseph S. Potential of silicon-rich biochar (Sichar) amendment to control crop pests and pathogens in agroecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168545. [PMID: 37984651 DOI: 10.1016/j.scitotenv.2023.168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soil-borne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nematodes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth and resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/root-damaging vs above-ground/aerial part-damaging; "biotrophic" vs "necrotrophic" sensu lato, and corresponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR AIDA, 97410 Saint-Pierre, Réunion, France; AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Ana L Llandres
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, Institut de Recherche Coton (IRC), Cotonou, Benin; CIRAD, UPR AIDA, International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - François-Régis Goebel
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Olivier Husson
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Janine Jean
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Alfredo Napoli
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Mathilde Sester
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Aïda, Phnom Penh, Cambodia; Institut Technologique du Cambodge, Phnom Penh, Cambodia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Materials Science and Engineering, University of NSW, Sydney, NSW 2052, Australia; Institute for Superconducting and Electronic Materials, School of Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Wu Z, Luo D, Zhang S, Zhang C, Zhang Y, Chen M, Li X. A systematic review of southern rice black-streaked dwarf virus in the age of omics. PEST MANAGEMENT SCIENCE 2023; 79:3397-3407. [PMID: 37291065 DOI: 10.1002/ps.7605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is one of the most damaging rice viruses. The virus decreases rice quality and yield, and poses a serious threat to food security. From this perspective, this review performed a survey of published studies in recent years to understand the current status of SRBSDV and white-backed planthopper (WBPH, Sogatella furcifera) transmission processes in rice. Recent studies have shown that the interactions between viral virulence proteins and rice susceptibility factors shape the transmission of SRBSDV. Moreover, the transmission of SRBSDV is influenced by the interactions between viral virulence proteins and S. furcifera susceptibility factors. This review focused on the molecular mechanisms of key genes or proteins associated with SRBSDV infection in rice via the S. furcifera vector, and the host defense response mechanisms against viral infection. A sustainable control strategy using RNAi was summarized to address this pest. Finally, we also present a model for screening anti-SRBSDV inhibitors using viral proteins as targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dan Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Liu Z, Song R, Zhang D, Wu R, Liu T, Wu Z, Zhang J, Hu D. Synthesis, insecticidal activity, and mode of action of novel imidazopyridine mesoionic derivatives containing an amido group. PEST MANAGEMENT SCIENCE 2022; 78:4983-4993. [PMID: 36054072 DOI: 10.1002/ps.7121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In our previous work, we applied a new synthetic strategy to design and synthesize a series of imidazopyridine mesoionic derivatives with an ester group. The newly synthesized compounds had excellent insecticidal activity against aphids; however, insecticidal activity against planthoppers was less than satisfactory. In the present study, we designed and synthesized a series of novel imidazopyridine mesoionic compounds, containing an amido group, and these compounds were found to have improved insecticidal activity against planthoppers. RESULTS The bioassay results demonstrated that most of the target compounds had moderate-to-good insecticidal activity against Sogatella furcifera, and some exhibited good-to-excellent insecticidal activity against Aphis craccivora. Among them, compound C6 had the highest insecticidal activity against S. furcifera and A. craccivora, with LC50 values of 10.5 and 2.09 μg mL-1 , respectively. Proteomic results suggested that the differentially expressed proteins mainly were enriched in the nervous system-related pathways after compound C6 treatment. Enzymatic assay results showed that compound C6 and triflumezopyrim had a certain inhibitory effect on acetylcholinesterase. Molecular docking and real-time quantitative PCR results indicated that compound C6 not only may act on the nicotinic acetylcholine receptor, but also may interact with the α4 and β1 subunits of this receptor. CONCLUSION The results reported here contribute to the development of new mesoionic insecticides and further our understanding of the mode-of-action of imidazopyridine mesoionic derivatives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Desheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Rong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Vu Q, Dossa GS, Mundaca EA, Settele J, Crisol-Martínez E, Horgan FG. Combined Effects of Soil Silicon and Host Plant Resistance on Planthoppers, Blast and Bacterial Blight in Tropical Rice. INSECTS 2022; 13:insects13070604. [PMID: 35886780 PMCID: PMC9318006 DOI: 10.3390/insects13070604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Rice is often attacked by several herbivores and plant pathogens at the same time. Public research has mainly focused on enhancing rice resistance against these biotic stresses by selecting rice lines with resistance genes during breeding programs. However, rice resistance to biotic stresses is also affected by soil nutrients, including available nitrogen and silicon. Nitrogen tends to reduce resistance, but silicon can increase resistance. We assessed the effects of combining soil silicon with host plant resistance against rice planthoppers, blast disease, and bacterial blight disease. We used pure silicon (SiO2) to avoid the confounding effects of nutrients associated with silicates. We also assessed the effects of nitrogenous fertilizer on silicon-augmented resistance to planthoppers. We found that high nitrogen diminishes the capacity of soil silicon and host resistance to reduce planthopper fitness (i.e., nitrogen was antagonistic); but that silicon counters nitrogen-related reductions in rice antixenosis defenses (e.g., repellency) against gravid female planthoppers (i.e., an additive effect of silicon and resistance). Silicon augmented resistance against blast and bacterial blight, but the effects were most apparent on susceptible varieties. Plants infected with bacterial blight generally grew larger in silicon amended soils. We discuss how silicon improves seedling quality by augmenting broad-spectrum resistance. Abstract Soil silicon enhances rice defenses against a range of biotic stresses. However, the magnitude of these effects can depend on the nature of the rice variety. We conducted a series of greenhouse experiments to examine the effects of silicon on planthoppers (Nilaparvata lugens [BPH] and Sogatella furcifera [WBPH]), a leafhopper (Nephotettix virescens [GLH]), blast disease (Magnaporthe grisea) and bacterial blight (Xanthomonas oryzae) in susceptible and resistant rice. We added powdered silica gel (SiO2) to paddy soil at equivalent to 0.25, 1.0, and 4.0 t ha−1. Added silicon reduced BPH nymph settling, but the effect was negligible under high nitrogen. In a choice experiment, BPH egg-laying was lower than untreated controls under all silicon treatments regardless of nitrogen or variety, whereas, in a no-choice experiment, silicon reduced egg-laying on the susceptible but not the resistant (BPH32 gene) variety. Stronger effects in choice experiments suggest that silicon mainly enhanced antixenosis defenses. We found no effects of silicon on WBPH or GLH. Silicon reduced blast damage to susceptible and resistant (Piz, Piz-5 and Pi9 genes) rice. Silicon reduced damage from a virulent strain of bacterial blight but had little effect on a less virulent strain in susceptible and resistant (Xa4, Xa7 and Xa4 + Xa7 genes) varieties. When combined with resistance, silicon had an additive effect in reducing biomass losses to plants infested with bacterial blight (resistance up to 50%; silicon 20%). We discuss how silicon-containing soil amendments can be combined with host resistance to reduce biotic stresses in rice.
Collapse
Affiliation(s)
- Quynh Vu
- Cuulong Delta Rice Research Institute, Tan Thanh, Thoi Lai District, Can Tho 905660, Vietnam;
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;
- International Rice Research Institute, Makati 1226, Philippines;
| | | | - Enrique A. Mundaca
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
| | - Josef Settele
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;
- German Centre for Integrative Biodiversity Research, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biological Sciences, University of the Philippines (UPLB), Los Baños 4031, Philippines
| | - Eduardo Crisol-Martínez
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Association of Fruit and Vegetable Growers of Almeria (COEXPHAL), Carretera de Ronda 11, 04004 Almeria, Spain
| | - Finbarr G. Horgan
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Centre for Pesticide Suicide Prevention, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Correspondence:
| |
Collapse
|