1
|
Zhang X, Li K, Wang P, Ma M, Tang T, Fu W, Wu H, Sun Y, Liu S, Liu D, Tan X. Harnessing Lecanicillium attenuatum: A novel strategy for combatting Nilaparvata lugens in rice fields. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106078. [PMID: 39277391 DOI: 10.1016/j.pestbp.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Nilaparvata lugens is a notorious rice pest causing significant annual yield and economic losses. The use of entomopathogenic fungi offers a promising and eco-friendly approach to sustainable pest management programs. However, research in this area is currently limited to a few specific types of insects and other arthropods. This study aimed to analyze the biocontrol potential of Lecanicillium attenuatum against N. lugens. Bioassays showed that L. attenuatum 3166 induced >80% mortality in N. lugens following 7 d exposure. Greenhouse and field investigations demonstrated that L. attenuatum 3166 application leads to a substantial reduction in N. lugens populations. Under greenhouse conditions, fluorescence was detected in GFP-labeled L. attenuatum 3166 hyphae enveloping the bodies of N. lugens. In field trials, L. attenuatum 3166 treatment exhibited a control efficacy of up to 68.94% at 14 d post-application, which was comparable to that of the commercial entomopathogenic fungal agent. Genomic sequencing of L. attenuatum 3166 revealed a comprehensive array of genes implicated in its infestation and lethality. Further, the transcriptome sequencing analysis highlighted the elevated expression levels of genes encoding proteases, chitinases, cutinases, and phospholipases. Our findings highlight the potential of L. attenuatum 3166 as an effective biological control agent against N. lugens.
Collapse
Affiliation(s)
- Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kui Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Pei Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingyong Ma
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tao Tang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wei Fu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongtao Wu
- Jiangsu Tsingda Smart Biotech Co., Ltd, Suzhou 215400, China
| | - Yan Sun
- Jiangsu Tsingda Smart Biotech Co., Ltd, Suzhou 215400, China
| | - Sizhen Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| | - Xinqiu Tan
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
2
|
Mani K, Vitenberg T, Khatib S, Opatovsky I. Effect of entomopathogenic fungus Beauveria bassiana on the growth characteristics and metabolism of black soldier fly larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105684. [PMID: 38072541 DOI: 10.1016/j.pestbp.2023.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Beauveria bassiana is an entomopathogenic fungus widely used in agriculture to reduce populations of various pests. However, when agricultural waste is utilized for organic recycling, B. bassiana has the potential to impact recycling performance, by affecting the survival, and body mass of decomposing organisms (such as insect's larvae). Additionally, in natural conditions where decayed organic matter contains a high load of different entomopathogenic organisms, larval growth may be affected when consumed or in contact. In a laboratory study, we aimed to comprehend the effects of B. bassiana on the growth characteristics and larval metabolism of the black soldier fly larvae, which is a known decomposing insect. The experiments used both feeding (mixing the spores with the diet, hereafter BF) and contact treatments (by dipping the larva in the spores solution, hereafter BD), and were compared to a water-treated control group. The BF treatment significantly reduced larval body weight, adult emergence, and adult weight compared to both the control and the BD treatment. Furthermore, an analysis of hemolymph metabolites, categorized by class, indicated a higher accumulation of metabolites belonging to the purine and purine derivative classes, as well as carboxylic acids and their derivatives, including peptides and oligopeptides, indicating potential disruption of protein synthesis or degradation caused by the BF treatment. Pathway enrichment analysis showed significant alterations in purine metabolism and D-Arginine and D-ornithine metabolism compared to the control. Taurine and hypotaurine metabolism were significantly altered in the BD treatment compared to the control but not significantly enriched in the BF treatment. Our results suggest that the BF treatment impairs protein synthesis or degradation, affecting larval growth characteristics. Future studies should explore innate immunity-related gene expression and antimicrobial peptide production in BSF larvae to understand their immunity to pathogens.
Collapse
Affiliation(s)
- Kannan Mani
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Tzach Vitenberg
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Soliman Khatib
- Laboratory of Natural Compounds and Analytical Chemistry, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Tel-Hai Academic College, Upper Galilee, Israel
| | - Itai Opatovsky
- Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel; Department of Animal Science, Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel.
| |
Collapse
|
3
|
Mannino MC, Davyt-Colo B, Huarte-Bonnet C, Diambra L, Pedrini N. Transcriptomic landscape of the interaction between the entomopathogenic fungus Beauveria bassiana and its tolerant host Tribolium castaneum revealed by dual RNA-seq. Sci Rep 2023; 13:16506. [PMID: 37783781 PMCID: PMC10545715 DOI: 10.1038/s41598-023-43889-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Entomopathogenic fungi such as Beauveria bassiana are the only insect pathogens able to start the infection process by penetrating through the host cuticle. However, some insects try to avoid fungal infection by embedding their cuticle with antifungal compounds. This is the case of the red flour beetle Tribolium castaneum, which generates economical loss of great significance in stored product environments worldwide. In this study, T. castaneum adults were fed during different time periods (from 3 to 72 h) on B. bassiana conidia-covered corn kernels. The progression of fungal infection was monitored using the dual RNA-seq technique to reconstruct the temporal transcriptomic profile and to perform gene enrichment analyses in both interacting organisms. After mapping the total reads with the B. bassiana genome, 904 genes were identified during this process. The more expressed fungal genes were related to carbon catabolite repression, cation binding, peptidase inhibition, redox processes, and stress response. Several immune-related genes from Toll, IMD, and JNK pathways, as well as genes related to chitin modification, were found to be differentially expressed in fungus-exposed T. castaneum. This study represents the first dual transcriptomic approach to help understand the interaction between the entomopathogenic fungus B. bassiana and its tolerant host T. castaneum.
Collapse
Affiliation(s)
- María Constanza Mannino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina
| | - Belén Davyt-Colo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genómicos (CREG), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Boulevard 120 1459, 1900, La Plata, Argentina
- CONICET, La Plata, Argentina
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
4
|
Zhang BX, Liu FF, Liu F, Sun YX, Rao XJ. Dual RNA Sequencing of Beauveria bassiana-Infected Spodoptera frugiperda Reveals a Fungal Protease with Entomopathogenic and Antiphytopathogenic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12757-12774. [PMID: 37602431 DOI: 10.1021/acs.jafc.3c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Insect pests and phytopathogens significantly impact crop yield and quality. The fall armyworm (FAW) Spodoptera frugiperda and the phytopathogen Fusarium graminearum cause substantial economic losses in crops like barley and wheat. However, the entomopathogen Beauveria bassiana shows limited efficacy against FAW, and its antiphytopathogenic activities against F. graminearum remain unclear. Here, dual RNA sequencing was performed to identify differentially expressed genes in B. bassiana-infected FAW larvae. We found that the BbAorsin gene was significantly upregulated at 36 and 48 h post-infection. BbAorsin encodes a serine-carboxyl protease and is mainly expressed in blastospores and hyphae. Overexpression of BbAorsin in B. bassiana ARSEF2860 enhanced virulence against Galleria mellonella and FAW larvae and inhibited F. graminearum growth. The recombinant BbAorsin protein induced apoptosis and necrosis in FAW hemocytes and inhibited F. graminearum spore germination. These findings shed light on transcriptomic mechanisms governing insect-pathogen interactions, which could aid in developing dual-functional entomopathogens and anti-phytopathogens.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
- Department of Scientific Research, Chuzhou University, Chuzhou 239000, China
| | - Fang-Fang Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Feng Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China
| |
Collapse
|
5
|
Wang ZL, Wang YD, Cheng YQ, Ye ZH, Liu GF, Yu XP. Characterization and transcriptomic analysis of a native fungal pathogen against the rice pest Nilaparvata lugens. Front Microbiol 2023; 14:1162113. [PMID: 37275152 PMCID: PMC10232905 DOI: 10.3389/fmicb.2023.1162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Given the threats posed by insecticide resistance to its control, eco-friendly strategies based on microbial pathogens emerged as a promising biocontrol alternative. In the present study, we isolated a native fungal pathogen against BPH from infected BPH cadavers and preliminarily identified as a strain of Aspergillus fumigatus based on morphological and molecular methods. Laboratory bioassay revealed that this fungal strain was highly virulent to BPH both at nymphal and adult stages, with the median lethal times (LT50) of 7.5 and 5.8 days under high conidial concentration of 1 × 109 conidia mL-1. A genome-wide view of gene expressions in BPH against fungal attack was analyzed by transcriptomic sequencing and consequently a large number of differentially expressed genes that mainly involved in host immune defense and cell detoxification were found. RNAi-mediated knockdown of an upregulated gene encoding a serine protease (NlSPN) could cause a significant decrease in BPH survival. Combination of dsRNA injection and fungal infection showed an additive effect on BPH mortality, which provided clues to develop new pest management strategies against BPH.
Collapse
|
6
|
Topical Fungal Infection Induces Shifts in the Gut Microbiota Structure of Brown Planthopper, Nilaparvata lugens (Homoptera: Delphacidae). INSECTS 2022; 13:insects13060528. [PMID: 35735865 PMCID: PMC9225076 DOI: 10.3390/insects13060528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Fungal entomopathogens are important natural enemies of insect pests and widely applied for biocontrol. Gut microbiota play important roles in mediating insect physiology and behavior. There is growing evidence that alteration of gut microbial communities due to pathological and environmental exposure can have detrimental impacts on host health and pathogen resistance. Here, we investigated the effects of topical infection with Metarhizium anisopliae fungus on the gut microbial community structure of the brown planthopper (Nilaparvata lugens, BPH), a destructive insect pest of rice. Our results demonstrated dramatic changes of gut bacterial community structure after topical fungal infection in BPH, as indicated by a significant increase in bacterial load, a significant decrease in bacterial community evenness and significant shifts in dominant bacterial abundance at the taxonomic level below the class. The dysbiosis of the gut bacteria might partly be due to the suppression of gut immunity caused by topical fungal infection. Our results highlighted the importance of the gut microbial community in fungal pathogenesis in insects. Abstract The brown planthopper (Nilaparvata lugens, BPH) is a destructive insect pest posing a serious threat to rice production. The fungal entomopathogen Metarhizium anisopliae is a promising alternative that can be used for BPH biocontrol. Recent studies have highlighted the significant involvement of gut microbiota in the insect–fungus interactions. In the presented study, we investigated the effects of topical fungal infection on the gut microbial community structure in BPH. Our results revealed that topical infection with M. anisopliae increased the bacterial load and altered the bacterial community structure in the gut of BPH. The relative abundances of the dominant gut bacteria at the order, family and genus level were significantly different between fungus-infected and uninfected groups. At the genus level, the uninfected BPH harbored high proportions of Pantoea and Enterobacter in the gut, whereas the fungus-infected BPH gut was absolutely dominated by Acinetobacter. Moreover, topical fungal infection significantly inhibited the expressions of immune-related genes encoding anti-microbial protein and dual oxidase that were involved in the maintenance of gut microbiota homeostasis, indicating that gut bacteria imbalance might be attributed in part to the suppression of gut immunity caused by fungal pathogen. Our results highlighted the importance of the gut microbial community during interactions between fungal pathogens and insect hosts.
Collapse
|