1
|
Zhang J, Wu Z, Zhou R, Han P, Liang Z, Xing Y, Gao T, Hao J, Liu P, Liu X. Fluazinam Resistance in Colletotrichum gloeosporioides and Its Association with Metabolic Detoxification and Efflux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7596-7608. [PMID: 40100941 DOI: 10.1021/acs.jafc.4c11478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Colletotrichum gloeosporioides is a major pathogen causing anthracnose of pepper (Capsicum annuum). In agricultural production, it is typically managed using fungicides like fluazinam. However, the frequent use of fungicides raises concerns about the potential development of fungicide resistance. This issue has not been extensively documented. To address this, 102 isolates of C. gloeosporioides were collected from pepper in fields. The EC50 values of these isolates to fluazinam exhibited a unimodal distribution with a mean value of 0.18 ± 0.14 μg/mL, indicating the absence of naturally occurring resistance in the sampling region. Through fluazinam domestication, 35 fluazinam-resistant mutants were obtained from the parental strain Cg219. These mutants exhibited strong cross-resistance to the fungicide SYP-14288. Metabolic analysis revealed that C. gloeosporioides could metabolize fluazinam into compounds lacking antifungal activity. Genetic analysis showed that genes related to efflux and detoxification were upregulated to varying degrees in both fluazinam-resistant mutants and fluazinam-treated strains. By comparing fungal growth and pathogenicity between the mutants and their parent, the mutants showed impaired overall fitness. Therefore, C. gloeosporioides has a low risk of developing resistance to fluazinam. This study provides critical data for monitoring the emergence of fungicide resistance and developing resistance management strategies for fluazinam.
Collapse
Affiliation(s)
- Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Rongjia Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ping Han
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100193, China
| | - Zhengya Liang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yaochun Xing
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tuqiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Shi F, Wang X, Wei M, Zhang X, Wang Z, Lu X, Zou C. Transcriptome analysis provides new insights into the resistance of pepper to Phytophthora capsici infection. BMC Genomics 2025; 26:311. [PMID: 40158192 PMCID: PMC11955139 DOI: 10.1186/s12864-025-11498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Phytophthora blight is a highly destructive soil-borne disease caused by Phytophthora capsici Leonian, which threatens pepper production. The molecular mechanism of pepper resistance to phytophthora blight is unclear, and the excavation and functional analysis of resistant genes are the bases and prerequisites for phytophthora blight-resistant breeding. We aimed to analyze the expression patterns of key genes in the plant-pathogen interaction metabolic pathway and propose a working model of the pepper defense signal network against Phytophthora capsici infection. RESULTS The 'ZCM334' pepper material used in this study is a high-generation inbred line that is immune to Phytophthora capsici and shows no signs of infection after inoculation. Comparative transcriptome analysis of the roots of 'ZCM334' and the susceptible material 'Early Calwonder' revealed significant differences in their gene expression profiles at different stages after inoculation. Most differentially expressed genes were significantly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction, and fatty acid degradation metabolic pathways. Some defense genes and transcription factors significant in pepper resistance to phytophthora blight were identified, including PR1, RPP13, FLS2, CDPK, CML, MAPK, RLP, RLK, WRYK, ERF, MYB, and bHLH, most of which were regulated after inoculation. A working model was constructed for the defense signal network of pepper against Phytophthora capsici. CONCLUSIONS These data provide a valuable source of information for improving our understanding of the potential molecular mechanisms by which pepper plants resist infection by Phytophthora capsici. The identification of key genes and metabolic pathways provides avenues for further exploring the immune mechanism of 'ZCM334' resistance to phytophthora blight.
Collapse
Affiliation(s)
- Fengyan Shi
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Xiuxue Wang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Meijun Wei
- College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, 110866, China
| | - Xi Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Zhidan Wang
- College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaochun Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China.
| | - Chunlei Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China.
| |
Collapse
|
3
|
Wu Z, Zhang J, Hao J, Liu P, Liu X. Understanding Efflux-Mediated Multidrug Resistance in Botrytis cinerea for Improved Management of Fungicide Resistance. Microb Biotechnol 2025; 18:e70074. [PMID: 40133238 PMCID: PMC11936762 DOI: 10.1111/1751-7915.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 03/27/2025] Open
Abstract
Botrytis cinerea is a major fungal pathogen infecting over 1400 plant species. It poses a significant threat to agriculture due to multiple fungicide resistance and multidrug resistance, involves resistance to fungicides with different modes of action. Multiple fungicide resistance is mostly due to an accumulation of point mutations in target genes over time, and MDR is result from efflux (e-MDR) and metabolism (m-MDR). This review introduces the occurrence of e-MDR of B. cinerea, the key mechanisms, origins and management strategies of e-MDR in fields. New materials such as nanomaterials become a strategy to overcoming MDR via inhibition of ABC transporter. A deeper understanding of efflux-mediated MDR will provide a support for the MDR management of B. cinerea and the efficient utilization of fungicides.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Junting Zhang
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jianjun Hao
- School of Food and AgricultureUniversity of MaineOronoMaineUSA
| | - Pengfei Liu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xili Liu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Wang T, Shi X, Wu Z, Zhang J, Hao J, Liu P, Liu X. Carboxylesterase and Cytochrome P450 Confer Metabolic Resistance Simultaneously to Azoxystrobin and Some Other Fungicides in Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9680-9690. [PMID: 38634420 DOI: 10.1021/acs.jafc.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xin Shi
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhang B, Wang Z, Zhang S, Zhong S, Sun Y, Liu X. N6-methyloxyadenine-mediated detoxification and ferroptosis confer a trade-off between multi-fungicide resistance and fitness. mBio 2024; 15:e0317723. [PMID: 38294217 PMCID: PMC10936191 DOI: 10.1128/mbio.03177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Multi-fungicide resistance (MFR) is a serious environmental problem, which results in the excessive use of fungicides. Fitness penalty, as a common phenomenon in MFR, can partially counteract the issue of resistance due to the weakened vigor of MFR pathogens. Their underlying mechanism and relationship remain unexplained. By Oxford Nanopore Technologies sequencing and dot blot, we found that N6-methyloxyadenine (6mA) modification, the dominate epigenetic marker in Phytophthora capsici, was significantly altered after MFR emerged. Among the differently methylated genes, PcGSTZ1 could efficiently detoxify SYP-14288, a novel uncoupler, through complexing the fungicide with glutathione and induce MFR. Interestingly, PcGSTZ1 overexpression was induced by elevated 6mA levels and chromatin accessibility to its genomic loci. Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in P. capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. In conclusion, the findings provide new insights into the biological role of 6mA as well as the mechanisms underlying the trade-off between MFR and fitness. These could also benefit disease control through the blockade of the epigenetic axis to resensitize resistant isolates.IMPORTANCEN6-methyloxyadenine (6mA) modification on DNA is correlated with tolerance under different stress in prokaryotes. However, the role of 6mA in eukaryotes remains poorly understood. Our current study reveals that DNA adenine methyltransferase 1 (DAMT1)-mediated 6mA modification at the upstream region of GST zeta 1 (GSTZ1) is elevated in the resistant strain. This elevation promotes the detoxification uncoupler and induces multifungicide resistance (MFR). Moreover, the overexpression led to reactive oxygen species burst and ferroptosis in SYP-14288-resistant mutants, which enhanced the resistance and induced fitness penalty in Phytophthora capsici through triggering low energy shock adaptive response. Furthermore, this study revealed that the 6mA-PcGSTZ1-ferroptosis axis could mediate intergenerational resistance memory transmission and enabled adaptive advantage to P. capsici. Overall, our findings uncover an innovative mechanism underlying 6mA modification in regulating PcGSTZ1 transcription and the ferroptosis pathway in P. capsici.
Collapse
Affiliation(s)
- Borui Zhang
- China Agricultural University, Beijing, China
| | - Zhiwen Wang
- China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | | | - Shan Zhong
- China Agricultural University, Beijing, China
| | - Ye Sun
- China Agricultural University, Beijing, China
| | - Xili Liu
- China Agricultural University, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Dai T, Yang J, Zhao C, Chen J, Zhang C, Wang Z, Peng Q, Liu P, Miao J, Liu X. Unveiling Vacuolar H +-ATPase Subunit a as the Primary Target of the Pyridinylmethyl-Benzamide Fungicide, Fluopicolide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1527-1538. [PMID: 38193425 DOI: 10.1021/acs.jafc.3c08485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
An estimated 240 fungicides are presently in use, but the direct targets for the majority remain elusive, constraining fungicide development and efficient resistance monitoring. In this study, we found that Pcα-actinin knockout did not influence the sensitivity of Phytophthora capsici to fluopicolide, which is a notable oomycete inhibitor. Using a combination of Bulk Segregant Analysis Sequencing and Drug Affinity Responsive Target Stability (DARTS) assays, the vacuolar H+-ATPase subunit a (PcVHA-a) was pinpointed as the target protein of fluopicolide. We also confirmed four distinct point mutations in PcVHA-a responsible for fluopicolide resistance in P. capsici through site-directed mutagenesis. Molecular docking, ATPase activity assays, and a DARTS assay suggested a fluopicolide-PcVHA-a interaction. Sequence analysis and further molecular docking validated the specificity of fluopicolide for oomycetes or fish. These findings support the claim that PcVHA-a is the target of fluopicolide, proposing vacuolar H+-ATPase as a promising target for novel fungicide development.
Collapse
Affiliation(s)
- Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jikun Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuang Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinzhu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengfei Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
7
|
Dai T, Yuan K, Shen J, Miao J, Liu X. Ametoctradin resistance risk and its resistance-related point mutation in PsCytb of Phytophthora sojae confirmed using ectopic overexpression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105747. [PMID: 38225090 DOI: 10.1016/j.pestbp.2023.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
Ametoctradin is mainly used to treat plant oomycetes diseases, but the mechanism and resistance risk of ametoctradin in Phytophthora sojae remain unknown. This study determined the ametoctradin sensitivity of 106 P. sojae isolates and found that the frequency distribution of the median effective concentration (EC50) of ametoctradin was unimodal with a mean value of 0.1743 ± 0.0901 μg/mL. Furthermore, ametoctradin-resistant mutants had a substantially lower fitness index compared with that of wild-type isolates. Although ametoctradin did not show cross-resistance to other fungicides, negative cross-resistance to amisulbrom was found. In comparison to sensitive isolates, the control efficacy of ametoctradin to resistant mutants was lower, implying a low to moderate ametoctradin resistance risk in P. sojae. All ametoctradin-resistant mutants contained a S33L point mutation in PsCytb. A system with overexpression of PsCytb in the nucleus was established. When we ectopically overexpressed S33L-harboring PsCytb, P. sojae developed ametoctradin resistance. We hypothesized that the observed negative resistance between ametoctradin and amisulbrom could be attributed to conformational changes in the binding cavity of PsCytb at residues 33 and 220.
Collapse
Affiliation(s)
- Tan Dai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kang Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
8
|
Dorigan AF, Moreira SI, da Silva Costa Guimarães S, Cruz-Magalhães V, Alves E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. PEST MANAGEMENT SCIENCE 2023; 79:4731-4753. [PMID: 37592727 DOI: 10.1002/ps.7726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
9
|
Cheng X, Zhang J, Liang Z, Wu Z, Liu P, Hao J, Liu X. Multidrug resistance of Rhizoctonia solani determined by enhanced efflux for fungicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105525. [PMID: 37666584 DOI: 10.1016/j.pestbp.2023.105525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
Plant pathogens can develop multidrug resistance (MDR) through metabolomic and efflux activities. Although MDR has been observed in the field, its mechanisms are yet to be further studied. MDR in Rhizoctonia solani induced by the uncoupler SYP-14288, which involved efflux transporters including ATP binding cassette (ABC) and major facilitator superfamily (MFS) have been reported in our previous study. To confirm this, corresponding genes of the wild-type R. solani X19 and its derived MDR mutant X19-7 were compared through transcriptomics, RNA-Seq data validation, and heterologous expression. Genes encoding six ABC transporters and seven MFS transporters were identified to be associated with MDR and mostly showed a constitutively higher expression in X19-7 than in X19 regardless of SYP-14288 treatment. Eight ABC transporter-encoding genes and eight MFS transporter-encoding genes were further characterized by transferring into Saccharomyces cerevisiae. The sensitivity of transformants containing either ABC transporter-encoding gene AG1IA_06082 and MFS transporter-encoding gene AG1IA_08645 was significantly decreased in responses to fungicides having various modes of action including SYP-14288, fluazinam, chlorothalonil, and difenoconazole, indicating that these two genes were related to MDR. The roles of two genes were further confirmed by successfully detecting their protein products and high accumulation of SYP-14288 in yeast transformants. Thus, ABC and MFS transporters contributed to the development of MDR in R. solani. The result helps to understand the cause and mechanisms that influence the efficient use of fungicide.
Collapse
Affiliation(s)
- Xingkai Cheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junting Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhengya Liang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|