1
|
Yu L, Yin Y, Wang Q, Zhao P, Han Q, Liao C. Impact of Ae-GRD on Ivermectin Resistance and Its Regulation by miR-71-5p in Aedes aegypti. INSECTS 2024; 15:453. [PMID: 38921167 PMCID: PMC11203581 DOI: 10.3390/insects15060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
iGABAR, a member of the Cys-loop ligand-gated ion channel superfamily, is a significant target of the insecticide ivermectin (IVM). GRD is the potential subunit of the insect iGABAR. However, little information about GRD in Ae. aegypti has been reported. In this study, we involved cloning and characterizing the iGABAR subunit GRD of Ae. aegypti (Ae-GRD). Sequence analysis indicated that Ae-GRD, as part of the cysteine-loop ligand-gated ion channel family, is similar to other insect GRD. RNA interference (RNAi) was employed to explore IVM resistance in Ae. aegypti, resulting in a significant reduction in Ae-GRD expression (p < 0.05), and the mortality of Ae. aegypti adults with Ae-GRD knockdown was significantly decreased after exposure to ivermectin. Bioinformatics prediction identified miR-71-5p as a potential regulator of Ae-GRD. In vitro, dual-luciferase reporter assays confirmed that Ae-GRD expression was regulated by miR-71-5p. Microinjection of miR-71-5p mimics upregulated miR-71-5p expression and downregulated Ae-GRD gene expression, reducing mortality by 34.52% following IVM treatment. Conversely, microinjection of a miR-71-5p inhibitor decreased miR-71-5p expression but did not affect the susceptibility to IVM despite increased Ae-GRD expression (p < 0.05). In conclusion, Ae-GRD, as one of the iGABA receptor subunits, is a potential target of ivermectin. It may influence ivermectin resistance by modulating the GABA signaling pathway. The inhibition of Ae-GRD expression by miR-71-5p decreased ivermectin resistance and consequently lowered the mortality rate of Ae. aegypti mosquitoes. This finding provides empirical evidence of the relationship between Ae-GRD and its miRNA in modulating insecticide resistance, offering novel perspectives for mosquito control strategies.
Collapse
Affiliation(s)
- Lingling Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Yanan Yin
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Qiuhui Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Peizhen Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (L.Y.); (Y.Y.); (Q.W.); (P.Z.)
- Hainan One Health Key Laboratory, Hainan University, Haikou 570228, China
- Hainan International One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Shah HK, Srinivasan V, Venkatesan S, Balakrishnan V, Candasamy S, Mathew N, Kumar A, Kuttiatt VS. Evaluation of the mosquitocidal efficacy of fluralaner, a potential candidate for drug based vector control. Sci Rep 2024; 14:5628. [PMID: 38454095 PMCID: PMC10920869 DOI: 10.1038/s41598-024-56053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Vector control is a key intervention against mosquito borne diseases. However, conventional methods have several limitations and alternate strategies are in urgent need. Vector control with endectocides such as ivermectin is emerging as a novel strategy. The short half-life of ivermectin is a limiting factor for its application as a mass therapy tool for vector control. Isoxazoline compounds like fluralaner, a class of veterinary acaricides with long half-life hold promise as an alternative. However, information about their mosquitocidal effect is limited. We explored the efficacy of fluralaner against laboratory reared vector mosquitoes-Aedes aegypti, Anopheles stephensi, and, Culex quinquefasciatus. 24 h post-blood feeding, fluralaner showed a significant mosquitocidal effect with LC50 values in the range of 24.04-49.82 ng/mL for the three different mosquito species tested. Effects on life history characteristics (fecundity, egg hatch success, etc.) were also observed and significant effects were noted at drug concentrations of 20, 25 and 45 ng/mL for Ae. aegypti, An. stephensi, and, Cx. quinquefasciatus respectively. At higher drug concentration of 250 ng/mL, significant mortality was observed within 1-2 h of post blood feeding. Potent mosquitocidal effect coupled with its long half-life makes fluralaner an excellent candidate for drug based vector control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nisha Mathew
- ICMR-Vector Control Research Centre, Puducherry, 605 006, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry, 605 006, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Kanchipuram, 602 105, India
| | | |
Collapse
|
3
|
Evans CC, Normile D, Gamble S, Guerino F, Dzimianski MT, Moorhead AR. Treatment of dogs with Bravecto ® (fluralaner) reduces mosquito survival and fecundity. Parasit Vectors 2023; 16:147. [PMID: 37106394 PMCID: PMC10142166 DOI: 10.1186/s13071-023-05682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/21/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Mosquitoes serve as the vector of canine heartworm (Dirofilaria immitis), which represents a significant and persistent threat to canine health. A reduction in the longevity and/or reproductive success of mosquitoes that take a blood meal from fluralaner-treated dogs may consequently reduce the local transmission of heartworm and prevent new infections. A novel secondary effect of an oral formulation of the ectoparasiticide fluralaner (Bravecto®) against a laboratory strain of the mosquito Aedes aegypti, a potential major vector of canine heartworm, was investigated in this study. METHODS Six dogs were administered a single dose of fluralaner orally in the form of Bravecto® Chews (at the labeled fluralaner dose of 25 mg/kg body weight), while six control dogs received no treatment. Mosquitoes were fed on blood that was collected from each dog prior to treatment and weekly for 15 weeks post-treatment to assess the continued effects of fluralaner as its serum level decreased. Mosquito fitness was assessed by three parameters: rate of successful blood-feeding, survival, and egg laying. RESULTS Successful blood-feeding rate was similar between control and treatment groups. In the fluralaner treatment, mosquito survival was significantly reduced within the first 24 h after blood-feeding, for the first 12 weeks post-treatment of the dogs (efficacy range = 33.2-73.3%). Survival of mosquitoes up until a potentially heartworm-infective timepoint (14 days post-blood-feeding) was significantly reduced in the fluralaner-treated group at several timepoints (1, 2, 5, 11, 12, 13, 14, and 15 weeks post-treatment; efficacy range = 49.4-91.4%), but was less consistently reduced at the other timepoints. Egg laying by mosquitoes was almost completely suppressed for the first 13 weeks following treatment of the dogs with fluralaner (treatment efficacy ≥ 99.8%). CONCLUSIONS Mosquitoes fed blood from fluralaner-treated dogs experienced a significant reduction in survival and fecundity. These findings support the potential for a reduction in heartworm transmission directly by lethal effects on the vector and indirectly through a reduction of the local vector population when mosquitoes are exposed to animals treated with fluralaner.
Collapse
Affiliation(s)
- Christopher Charles Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | | | | | | | - Michael T Dzimianski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrew Riddell Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Usseglio VL, Dambolena JS, Zunino MP. Can Essential Oils Be a Natural Alternative for the Control of Spodoptera frugiperda? A Review of Toxicity Methods and Their Modes of Action. PLANTS (BASEL, SWITZERLAND) 2022; 12:3. [PMID: 36616132 PMCID: PMC9823514 DOI: 10.3390/plants12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Spodoptera frugiperda is a major pest of maize crops. The application of synthetic insecticides and the use of Bt maize varieties are the principal strategies used for its control. However, due to the development of pesticide resistance and the negative impact of insecticides on the environment, natural alternatives are constantly being searched for. Accordingly, the objective of this review was to evaluate the use of essential oils (EOs) as natural alternatives for controlling S. frugiperda. This review article covers the composition of EOs, methods used for the evaluation of EO toxicity, EO effects, and their mode of action. Although the EOs of Ocimum basilicum, Piper marginatum, and Lippia alba are the most frequently used, Ageratum conyzoides, P. septuplinervium. O. gratissimum and Siparuna guianensis were shown to be the most effective. As the principal components of these EOs vary, then their mode of action on the pest could be different. The results of our analysis allowed us to evaluate and compare the potential of certain EOs for the control of this insect. In order to obtain comparable results when evaluating the toxicity of EOs on S. frugiperda, it is important that methodological issues are taken into account.
Collapse
Affiliation(s)
- Virginia L. Usseglio
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Cátedra de Química General, Faculta de Ciencias Exactas, Físicas y Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
| | - José S. Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Cátedras de Química Orgánica y Productos Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
| | - María P. Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Cátedras de Química Orgánica y Productos Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
| |
Collapse
|