1
|
Shah PN, Maistrou S, van Loon JJA, Dicke M. Effect of the bacterial pathogen Pseudomonas protegens Pf-5 on the immune response of larvae of the black soldier fly, Hermetia illucens L. J Invertebr Pathol 2025; 209:108272. [PMID: 39894339 DOI: 10.1016/j.jip.2025.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
The larvae of the black soldier fly (BSFL), Hermetia illucens L. (Diptera: Stratiomyidae), are exposed to a diverse range of microorganisms within their feeding substrate that is mainly composed of decaying organic matter. In the current study, we evaluated the effect of an interaction with a Gram-negative bacterium, Pseudomonas protegens Pf-5, on the immune responses of the larvae of H. illucens. Five-day-old BSF larvae were injected with one of five doses of bacterial inoculum to assess survival. We observed dose-dependent mortality in BSF larvae to P. protegens infection, with mortality increasing with an increasing pathogen dose. Injection of more than 50 bacterial cells per larva resulted in 100 % larval mortality, while injection of one bacterial cell per larva caused only 20 % mortality. Phenoloxidase activity, an element of the immune response, correlated with the pathogen dose, increasing early for larvae injected with a high pathogen dose (i.e., 5000 bacterial cells per larva) and later for larvae injected with a low bacterial dose (i.e., one cell per larva). The expression of four genes encoding for antimicrobial peptides (AMPs), namely cecropin, defensin-A, defensin-like peptide 4, and attacin-A, displayed a treatment- and dose-specific expression pattern. Injection with either PBS (control) or different bacterial doses initially induced the upregulation of AMP genes; however, expression reduced over time in the control larvae. At high pathogen dose, all tested genes except hsp70 were consistently induced. The expression of all genes, except hsp70, was induced by low pathogen dose at 2 h, then reduced gradually and increased significantly at 15 h. These results collectively indicate that BSF larvae temporally modulate their immune responses, such as phenoloxidase activation and AMP gene expression, to combat a pathogen within their hemolymph.
Collapse
Affiliation(s)
- Parth N Shah
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Sevasti Maistrou
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
2
|
Maldonado-Ruiz P. The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol. Microorganisms 2024; 12:2451. [PMID: 39770654 PMCID: PMC11676601 DOI: 10.3390/microorganisms12122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community. Many bacterial taxa frequently reported in ticks include soil, plant, and animal-associated microbes, suggesting many are environmentally acquired, including members with known entomopathogenic potential, such as Bacillus thuringiensis, Bacillus spp., and Pseudomonas spp. It has been reported that microbial community composition can impact pathogen persistence, dissemination, and fitness in ticks. In the United States, Ixodes scapularis (northeast) and I. pacificus (west) are the predominant vectors of Borrelia burgdorferi, the causal agent of Lyme disease. Amblyomma americanum is another important tick vector in the U.S. and is becoming an increasing concern as it is the leading cause of alpha-gal syndrome (AGS, or red meat allergy). This condition is caused by tick bites containing the galactose alpha 1,3 galactose (alpha-gal) epitope in their saliva. In this paper, we present a summary of the tick microbiome, including the endosymbiotic bacteria and the environmentally acquired (here referred to as the non-endosymbiotic community). We will focus on the non-endosymbiotic bacteria from Ixodes spp. and Amblyomma americanum and discuss their potential for novel biocontrol strategies.
Collapse
Affiliation(s)
- Paulina Maldonado-Ruiz
- Department of Entomology, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
3
|
Půža V, Machado RAR. Systematics and phylogeny of the entomopathogenic nematobacterial complexes Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. ZOOLOGICAL LETTERS 2024; 10:13. [PMID: 39020388 PMCID: PMC11256433 DOI: 10.1186/s40851-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/08/2024] [Indexed: 07/19/2024]
Abstract
Entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, along with their bacterial symbionts from the genera Xenorhabdus and Photorhabdus, respectively, are important biological control agents against agricultural pests. Rapid progress in the development of genomic tools has catalyzed a transformation of the systematics of these organisms, reshaping our understanding of their phylogenetic and cophlylogenetic relationships. In this review, we discuss the major historical events in the taxonomy and systematics of this group of organisms, highlighting the latest advancements in these fields. Additionally, we synthesize information on nematode-bacteria associations and assess the existing evidence regarding their cophylogenetic relationships.
Collapse
Affiliation(s)
- Vladimír Půža
- Institute of Entomology, Biology centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, České Budějovice, 37005, Czech Republic.
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| |
Collapse
|
4
|
Zwyssig M, Spescha A, Patt T, Belosevic A, Machado RAR, Regaiolo A, Keel C, Maurhofer M. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria. THE ISME JOURNAL 2024; 18:wrae028. [PMID: 38381653 PMCID: PMC10945363 DOI: 10.1093/ismejo/wrae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria-bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5. Bacterial populations were assessed over time in experimental systems of increasing complexity. In vitro, SM5 was outcompeted when CHA0 reached a certain cell density, resulting in the collapse of the SM5 population. In contrast, both bacteria were able to coexist upon haemolymph-injection into Galleria mellonella larvae, as found for three further EPP-NAB combinations. Finally, both bacteria were administered by natural infection routes i.e. orally for CHA0 and nematode-vectored for SM5 resulting in the addition of RS5 to the system. This did not alter bacterial coexistence nor did the presence of the EPP affect nematode reproductive success or progeny virulence. CHA0 benefited from RS5, probably by exploiting access routes formed by the nematodes penetrating the larval gut epithelium. Our results indicate that EPPs are able to share an insect host with EPNs and their mutualistic bacteria without major negative effects on the reproduction of any of the three entomopathogens or the fitness of the nematodes. This suggests that their combination is a promising strategy for biological insect pest control.
Collapse
Affiliation(s)
- Maria Zwyssig
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Anna Spescha
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Tabea Patt
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Adrian Belosevic
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, University of Neuchatel, CH-2000 Neuchatel, Switzerland
| | - Alice Regaiolo
- Johannes-Gutenberg-University Mainz, Institute of Molecular Physiology, Microbiology and Biotechnology, 55128 Mainz, Germany
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
5
|
Suenaga M, Katayama N, Kitamura K, Kai K. Structures and Biosynthesis of Caryoynencins, Unstable Bacterial Polyynes from Pseudomonas protegens Recombinant Expressing the cayG Gene. J Org Chem 2023; 88:16280-16291. [PMID: 37947517 DOI: 10.1021/acs.joc.3c01789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Bacteria in certain genera can produce "bacterial polyynes" that contain a conjugated C≡C bond starting from a terminal alkyne. Protegenin A is a derivative of octadecanoic acid that contains an ene-tetrayne moiety. It was discovered in Pseudomonas protegens Cab57 and exhibits strong antioomycete and moderate antifungal activity. By introducing cayG, a cytochrome P450 gene from Burkholderia caryophylli, into P. protegens Cab57, protegenin A was converted into more complex polyynes, caryoynencins A-E. A purification method that minimized the degradation and isomerization of caryoynencins was established. For the first time, as far as we know, the 1H and 13C{1H} NMR signals of caryoynencins were completely assigned by analyzing the NMR data of the isolated compounds and protegenin A enriched with [1-13C]- or [2-13C]-acetate. Through the structural analysis of caryoynencins D/E and bioconversion experiments, we observed that CayG constructs the allyl alcohol moiety of caryoynencins A-C through sequential hydroxylation, dehydration, and hydroxylation. The recombinant strain exhibited a stronger antioomycete activity compared to the wild-type strain. This paper proposes a stable purification and structural determination method for various bacterial polyynes, and P. protegens Cab57 holds promise as an engineering host for the production of biologically active polyynes.
Collapse
Affiliation(s)
- Mayuna Suenaga
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Naoka Katayama
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kokoro Kitamura
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Awori RM, Hendre P, Amugune NO. The genome of a steinernematid-associated Pseudomonas piscis bacterium encodes the biosynthesis of insect toxins. Access Microbiol 2023; 5:000659.v3. [PMID: 37970093 PMCID: PMC10634486 DOI: 10.1099/acmi.0.000659.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023] Open
Abstract
Several species of soil-dwelling Steinernema nematodes are used in the biocontrol of crop pests, due to their natural capacity to kill diverse lepidopteran species. Although this insect-killing trait is known to be augmented by the nematodes' Xenorhabdus endosymbionts, the role of other steinernematid-associated bacterial genera in the nematode lifecycle remains unclear. This genomic study aimed to determine the potential of Pseudomonas piscis to contribute to the entomopathogenicity of its Steinernema host. Insect larvae were infected with three separate Steinernema cultures. From each of the three treatments, the prevalent bacteria in the haemocoel of cadavers, four days post-infection, were isolated. These three bacterial isolates were morphologically characterised. DNA was extracted from each of the three bacterial isolates and used for long-read genome sequencing and assembly. Assemblies were used to delineate species and identify genes that encode insect toxins, antimicrobials, and confer antibiotic resistance. We assembled three complete genomes. Through digital DNA-DNA hybridisation analyses, we ascertained that the haemocoels of insect cadavers previously infected with Steinernema sp. Kalro, Steinernema sp. 75, and Steinernema sp. 97 were dominated by Xenorhabdus griffiniae Kalro, Pseudomonas piscis 75, and X. griffiniae 97, respectively. X. griffiniae Kalro and X. griffiniae 97 formed a subspecies with other X. griffiniae symbionts of steinernematids from Kenya. P. piscis 75 phylogenetically clustered with pseudomonads that are characterised by high insecticidal activity. The P. piscis 75 genome encoded the production pathway of insect toxins such as orfamides and rhizoxins, antifungals such as pyrrolnitrin and pyoluteorin, and the broad-spectrum antimicrobial 2,4-diacetylphloroglucinol. The P. piscis 75 genome encoded resistance to over ten classes of antibiotics, including cationic lipopeptides. Steinernematid-associated P. piscis bacteria hence have the biosynthetic potential to contribute to nematode entomopathogenicity.
Collapse
Affiliation(s)
- Ryan Musumba Awori
- Elakistos Biosciences, P. O. Box 19301-00100, Nairobi, Kenya
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Prasad Hendre
- International Centre for Research on Agroforestry, P. O. Box 30677-00100, Nairobi, Kenya
| | - Nelson O. Amugune
- Department of Biology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
7
|
Garrido-Sanz D, Vesga P, Heiman CM, Altenried A, Keel C, Vacheron J. Relation of pest insect-killing and soilborne pathogen-inhibition abilities to species diversification in environmental Pseudomonas protegens. THE ISME JOURNAL 2023; 17:1369-1381. [PMID: 37311938 PMCID: PMC10432460 DOI: 10.1038/s41396-023-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Strains belonging to the Pseudomonas protegens phylogenomic subgroup have long been known for their beneficial association with plant roots, notably antagonising soilborne phytopathogens. Interestingly, they can also infect and kill pest insects, emphasising their interest as biocontrol agents. In the present study, we used all available Pseudomonas genomes to reassess the phylogeny of this subgroup. Clustering analysis revealed the presence of 12 distinct species, many of which were previously unknown. The differences between these species also extend to the phenotypic level. Most of the species were able to antagonise two soilborne phytopathogens, Fusarium graminearum and Pythium ultimum, and to kill the plant pest insect Pieris brassicae in feeding and systemic infection assays. However, four strains failed to do so, likely as a consequence of adaptation to particular niches. The absence of the insecticidal Fit toxin explained the non-pathogenic behaviour of the four strains towards Pieris brassicae. Further analyses of the Fit toxin genomic island evidence that the loss of this toxin is related to non-insecticidal niche specialisation. This work expands the knowledge on the growing Pseudomonas protegens subgroup and suggests that loss of phytopathogen inhibition and pest insect killing abilities in some of these bacteria may be linked to species diversification processes involving adaptation to particular niches. Our work sheds light on the important ecological consequences of gain and loss dynamics for functions involved in pathogenic host interactions of environmental bacteria.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Pilar Vesga
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | - Clara M Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Aline Altenried
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
8
|
Tarasco E, Fanelli E, Salvemini C, El-Khoury Y, Troccoli A, Vovlas A, De Luca F. Entomopathogenic nematodes and their symbiotic bacteria: from genes to field uses. FRONTIERS IN INSECT SCIENCE 2023; 3:1195254. [PMID: 38469514 PMCID: PMC10926393 DOI: 10.3389/finsc.2023.1195254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 03/13/2024]
Abstract
The term "microbial control" has been used to describe the use of microbial pathogens (bacteria, viruses, or fungi) or entomopathogenic nematodes (EPNs) to control various insect pest populations. EPNs are among the best biocontrol agents, and major developments in their use have occurred in recent decades, with many surveys having been conducted all over the world to identify EPNs that may have potential in the management of insect pests. For nematodes, the term "entomopathogenic" means "causing disease to insects" and is mainly used in reference to the bacterial symbionts of Steinernema and Heterorhabditis (Xenorhabdus and Photorhabdus, respectively), which cause EPN infectivity. A compendium of our multiannual experiences on EPN surveys and on their collection, identification, characterization, and use in agro-forestry ecosystems is presented here to testify and demonstrate once again that biological control with EPNs is possible and offers many advantages over chemicals, such as end-user safety, minimal damage to natural enemies, and lack of environmental pollution, which are essential conditions for an advanced IPM strategy.
Collapse
Affiliation(s)
- Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
- Institute for Sustainable Plant Protection (IPSP), Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - Elena Fanelli
- Institute for Sustainable Plant Protection (IPSP), Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - Carlo Salvemini
- Institute for Sustainable Plant Protection (IPSP), Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - Yara El-Khoury
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Alberto Troccoli
- Institute for Sustainable Plant Protection (IPSP), Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - Alessio Vovlas
- Institute for Sustainable Plant Protection (IPSP), Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | - Francesca De Luca
- Institute for Sustainable Plant Protection (IPSP), Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| |
Collapse
|
9
|
Hamze R, Foxi C, Ledda S, Satta G, Ruiu L. Pseudomonas protegens Affects Mosquito Survival and Development. Curr Microbiol 2023; 80:172. [PMID: 37029244 DOI: 10.1007/s00284-023-03291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
This study investigated the pathogenic potential of Pseudomonas protegens on mosquito larvae of the two species Culex pipiens and Aedes albopictus, representing major threats for disease transmission in the Mediterranean area and worldwide. The bacterium achieved to kill over 90% of the mosquito larvae within 72 h after exposition to a bacterial concentration of 100 million CFU/ml. These lethal effects were concentration dependent and a significantly higher susceptibility was associated with younger larvae of both mosquito species. Significant slowdown of immature (larval and pupal) development and decrease in adult emergence rate after treatment with sub-lethal doses of the bacterium were also detected. This study reports for the first time the insecticidal activity of a root-associated biocontrol bacterium against aquatic mosquito larvae.
Collapse
Affiliation(s)
- Rim Hamze
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39/A, 07100, Sassari, Italy
| | - Cipriano Foxi
- Istituto Zooprofilattico Sperimentale Della Sardegna, Sassari, Italy
| | - Salvatore Ledda
- Istituto Zooprofilattico Sperimentale Della Sardegna, Sassari, Italy
| | - Giuseppe Satta
- Istituto Zooprofilattico Sperimentale Della Sardegna, Sassari, Italy
| | - Luca Ruiu
- Dipartimento Di Agraria, University of Sassari, Viale Italia 39/A, 07100, Sassari, Italy.
| |
Collapse
|
10
|
Ogier JC, Akhurst R, Boemare N, Gaudriault S. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends Microbiol 2023; 31:629-643. [PMID: 36801155 DOI: 10.1016/j.tim.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/19/2023]
Abstract
Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.
Collapse
Affiliation(s)
| | | | - Noël Boemare
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | |
Collapse
|