1
|
Wang H, Li M, Li S, Chen X, Li B, Shao H, Jin F. Dissipation and potential risk of tristyrylphenol ethoxylate homologs in peanuts by spraying and root irrigation: A comparative assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134486. [PMID: 38714052 DOI: 10.1016/j.jhazmat.2024.134486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Peanuts, known for their nutritional value, health benefits, and delicious taste, are susceptible to agricultural chemical contamination, posing a challenge to the peanut industry in China. While tristyrylphenol ethoxylates (TSPEOs) have garnered attention for their widespread use in pesticide formulations, their dissipation and potential risks in peanuts remain a gap in knowledge. This study, unique in its focus on TSPEOs, investigates their dissipation and potential risks under two common application modes: spraying and root irrigation. The concentration of total TSPEOs in peanut plants was significantly higher when sprayed (435-37,693 μg/kg) than in root irrigation (24-1602 μg/kg). The dissipation of TSPEOs was faster in peanuts and soil when sprayed, with half-lives of 3.67-5.59 d (mean: 4.37 d) and 5.41-7.07 d (mean: 5.95 d), respectively. The residue of TSPEOs in peanut shells and soil were higher with root irrigation (8.9-65.2 and 25.4-305.1 μg/kg, respectively) than with spraying (5.4-30.6 and 8.8-146.5 μg/kg, respectively). These results indicated that the dissipation behavior of TSPEOs in peanuts was influenced by application modes. While the healthy and ecological risk assessments of TSPEOs in soil and peanut shells showed no risks, root irrigation might pose a higher potential risk than spraying. This research provides valuable data for the judicious application of pesticides during peanut cultivation to enhance pesticide utilization and reduce potential risks.
Collapse
Affiliation(s)
- Hongping Wang
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minjie Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
| | - Simeng Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueying Chen
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bowen Li
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Cui K, Wang J, Ma G, Guan S, Liang J, Fang L, Li T, Dong Z, Ding R, Wu X, Zheng Y. Greenhouse cultivation enhances pesticide bioaccumulation in cowpeas following repeated spraying. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120172. [PMID: 38310799 DOI: 10.1016/j.jenvman.2024.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 μg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Guoping Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Li Z. Predicting pesticide residues in pod fruits with a modified peel-like uptake model: A green pea demonstration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115421. [PMID: 37657391 DOI: 10.1016/j.ecoenv.2023.115421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Peas are among the most popular leguminous plants, consumed by both humans and animals in large quantities. Pesticides are widely used globally to increase pea yield, and as a result, pesticide residues can be taken up by pea plants and bioaccumulate in their fruits, including peas and pods. However, there is a lack of modeling approaches available to predict residue concentrations in peas. To address this issue, a pod fruit model (specifically designed for neutral organic compounds) was proposed to simulate the bioaccumulation process of pesticide residues in pea plants, which was developed by modifying a peel-like uptake model. The simulation results, based on green pea as the modeling demonstration, reveal that moderately-lipophilic pesticides (i.e., log KOW around 3) have higher simulated concentrations in peas at harvest compared to hydrophilic (i.e., log KOW less than 0) or highly-lipophilic (i.e., log KOW over 5) pesticides, which is due to the enhanced uptake process of moderately-lipophilic compounds in the pod-pea system, such as their ability to penetrate the pod cuticle and be transported via phloem sap. The sensitivity test and variability analysis conducted in this study revealed that the degradation kinetics, including metabolism, hydrolysis, and photolysis, had a significant impact on moderately-lipophilic pesticides due to their high simulated concentrations in the pea plant. This can result in substantial loss of residue mass via degradation. The validation of the model demonstrated that the simulation results, specifically residue concentrations in the fruit, were consistent with the harvested data. However, some inconsistency was observed immediately after pesticide application, which could be attributed to plant growth dynamics and initial surface mass distributions. The proposed pod fruit model provides new insights into the bioaccumulation process of pesticide residues in pea plants and enables high-throughput simulations of residue concentrations at harvest. To enhance the performance of the pod fruit model, future research should consider plant growth dynamics, plant uptake of ionizable compounds, and initial mass distribution functions.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Li Z, Fantke P. Considering degradation kinetics of pesticides in plant uptake models: proof of concept for potato. PEST MANAGEMENT SCIENCE 2023; 79:1154-1163. [PMID: 36371622 PMCID: PMC10099551 DOI: 10.1002/ps.7288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Degradation kinetics of pesticides in plants are crucial for modeling mechanism-based pesticide residual concentrations. However, due to complex open-field conditions that involve multiple pesticide plant uptake and elimination processes, it is difficult to directly measure degradation kinetics of pesticides in plants. To address this limitation, we proposed a modeling approach for estimating degradation rate constants of pesticides in plants, using potato as a model crop. An operational tool was developed to backward-estimate degradation rate constants, and three pesticides were selected to perform example simulations. RESULTS The simulation results of thiamethoxam indicated that the growth dynamics of the potato had a significant impact on the degradation kinetic estimates when the pesticide was applied during the early growth stage, as the size of the potato determined the uptake and elimination kinetics via diffusion. Using mepiquat, we demonstrated that geographical variations in weather conditions and soil properties led to significant differences in the dissipation kinetics in both potato plants and soil, which propagated the variability of the degradation rate constant. Simulation results of chlorpyrifos differed between two reported field studies, which is due to the effect of the vertical distribution of the residue concentration in the soil, which is not considered in the majority of recent studies. CONCLUSIONS Our proposed approach is adaptable to plant growth dynamics, preharvest intervals, and multiple pesticide application events. In future research, it is expected that the proposed method will enable region-specific inputs to improve the estimation of the degradation kinetics of pesticides in plants. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource EngineeringTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
5
|
Li Z, Ai Z. Mapping Plant Bioaccumulation Potentials of Pesticides from Soil Using Satellite-Based Canopy Transpiration Rates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:117-129. [PMID: 36349963 DOI: 10.1002/etc.5511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The transpiration rate is an important factor that determines the bioaccumulation potential of pesticides from soil and can present a spatiotemporal pattern. In the present study, we proposed a satellite-based approach to map the bioaccumulation potential of pesticides from soil using the Global Land Evaporation Amsterdam Model (GLEAM). In the proposed model, the spatiotemporal variable (i.e., plant transpiration rate) was separately analyzed from the plant- and chemical-specific variables. The simulated bioaccumulation factors (BAFs; steady-state concentration ratios between plants and soil) of atrazine and lindane for the United States indicated that the proposed model can better predict the spatiotemporal pattern of bioaccumulation potentials of pesticides from soil than a previous weather-based model. The proposed approach using GLEAM's satellite data avoids the overestimation of plant transpiration rate in regions with a dry and warm climate. The comparison of BAFs between the proposed and weather-based models indicated that the satellite-based simulation was consistent with the weather-based simulation for most states and was more effective for the southwest region. Furthermore, plant- and chemical-specific variables were simulated for over 700 pesticides, which could be multiplied by satellite-based canopy transpiration rates to map the bioaccumulation potentials of chemicals from soil. Further evaluation of plant-specific variables, partitioning behaviors of ionizable compounds, and multiple uptake routes (e.g., airborne residue deposition) will aid in the evaluation of the spatiotemporal patterns of pesticide BAFs in plants in future research. Environ Toxicol Chem 2023;42:117-129. © 2022 SETAC.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhipin Ai
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan
| |
Collapse
|
6
|
Li Z, Wang H, Xiao S. A mechanism-based fate model of pesticide solutions on the plant surface under aerial application. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:933-952. [PMID: 36448373 DOI: 10.1080/1062936x.2022.2148738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues on plant surfaces are a primary source of pesticide bioaccumulation in crops. In this context, we propose a mechanism-based model for understanding the pesticide fate on the plant surface following aerial application, taking into account fate modelling of the pesticide spray solution on the plant surface. Using chlorothalonil as an example, the simulation results revealed that the spray solution dissipated rapidly after aerial application, resulting in the formation of a saturated pesticide solution, which facilitated the diffusion process of the pesticide residue from the plant surface into the peel tissue. The proposed model generated higher simulated residue concentrations in the peel or pulp than the current model, owing to the proposed model's assumption of rapid dissipation of the spray solution. This indicated that the proposed model specified the influence of the spray solution on the plant's exposure to residues via the surface deposition pathway, whereas the current modelling approach presented a generic estimate of the residue dissipation on the plant surface that linked to the residue's fate in the soil.
Collapse
Affiliation(s)
- Z Li
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - H Wang
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| | - S Xiao
- School of Public Health, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|