1
|
Chu X, Yin Z, Yue P, Wang X, Yang Y, Sun J, Kong Z, Ren J, Liu X, Lu C, Zhao H, Li Y, Ding X. A novel method for extraction of high purity and high production Phytophthora sojae oospores. PLANT METHODS 2024; 20:70. [PMID: 38755668 PMCID: PMC11097473 DOI: 10.1186/s13007-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Phytophthora sojae, a soil-borne oomycete pathogen, has been a yield limiting factor for more than 60 years on soybean. The resurgence of P. sojae (Phytophthora sojae) is primarily ascribed to the durable oospores found in soil and remnants of the disease. P. sojae is capable of infesting at any growth periods of the soybean, and the succeed infestation of P. sojae is predominantly attributed to long-lived oospores present in soil. Comprehending the molecular mechanisms that drive oospores formation and their significance in infestation is the key for effective management of the disease. However, the existing challenges in isolating and extracting significant quantities of oospores pose limitations in investigating the sexual reproductive stages of P. sojae. RESULTS The study focused on optimizing and refining the culture conditions and extraction process of P. sojae, resulting in establishment of an efficient and the dependable method for extraction. Novel optimized approach was yielded greater quantities of high-purity P. sojae oospores than traditional methods. The novel approach exceeds the traditional approaches with respect to viability, survival ability, germination rates of new oospores and the pathogenicity of oospores in potting experiments. CONCLUSION The proposed method for extracting P. sojae oospores efficiently yielded a substantial quantity of highly pure, viable, and pathogenic oospores. The enhancements in oospores extraction techniques will promote the research on the sexual reproductive mechanisms of P. sojae and lead to the creation of innovative and effective approaches for managing oomycete diseases.
Collapse
Affiliation(s)
- Xiaomeng Chu
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Ziyi Yin
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Pengjie Yue
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Xinyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Yue Yang
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Jiayi Sun
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Ziying Kong
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Jian Ren
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Xiaohan Liu
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Chongchong Lu
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China.
| | - Yang Li
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China.
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Tai, Shandong, 271018, China.
| |
Collapse
|
2
|
Feng D, Wu S, Jiang B, He S, Luo Y, Li F, Song B, Song R. Discovery of Novel Isoxazoline Derivatives Containing Diaryl Ether against Fall Armyworms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6859-6870. [PMID: 37126004 DOI: 10.1021/acs.jafc.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the continuous evolution of insect resistance, it is a tremendous challenge to control the fall armyworm (Spodoptera frugiperda) with traditional insecticides. To solve this pending issue, a series of novel isoxazoline derivatives containing diaryl ether structures were designed and synthesized, and most of the target compounds exhibited excellent insecticidal activity. Based on the three-dimensional quantitative structure-activity relationship (3D-QSAR) model analysis, we further optimized the molecular structure with compound L35 obtained and tested for its activity. Compound L35 (LC50 = 1.69 mg/L) exhibited excellent insecticidal activity against S. frugiperda, which was better than those of commercial fipronil (LC50 = 70.78 mg/L) and indoxacarb (LC50 = 5.37 mg/L). The enzyme-linked immunosorbent assay showed that L35 could upregulate the levels of GABA in insects. In addition, molecular docking and transcriptomic results also indicated that compound L35 may affect the nervous system of S. frugiperda by acting on GABA receptors. Notably, through high-performance liquid chromatography (HPLC), we were able to obtain the two enantiomers of compound L35, and the insecticidal activity test revealed that S-(+)-L35 was 44 times more active than R-(-)-L35 against S. frugiperda. This study established the chemistry basis and mechanistic foundations for the future development of pesticide candidates against fall armyworms.
Collapse
Affiliation(s)
- Di Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Shang Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Biaobiao Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Siqi He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Yuqin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Fangyi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|