1
|
Kuroda Y, Kato-Kogoe N, Tasaki E, Yuasa-Sunagawa M, Yamanegi K, Nakasho K, Nakasyo K, Nakase I, Futaki S, Tohyama Y, Hirose M. Suppressive effect of membrane-permeable peptides derived from autophosphorylation sites of the IGF-1 receptor on breast cancer cells. Eur J Pharmacol 2015; 765:24-33. [PMID: 26276395 DOI: 10.1016/j.ejphar.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/08/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) receptors play a crucial role in the biology of human cancer, making them an attractive target for anti-cancer agents. We previously designed oligopeptides containing the amino-acid sequences surrounding the autophosphorylation sites of the insulin receptor and found that two of them, namely, Ac-DIYET-NH2 and Ac-DYYRK-NH2, suppressed phosphorylation of purified insulin receptors in a non-ATP-competitive manner, whereas Ac-NIYQT-NH2 and Ac-NYYRK-NH2 suppressed in an ATP-competitive manner. Because the IGF-1 receptor is closely related to the insulin receptor, the aim of this study was to observe the effects of these peptides, which correspond to the amino-acid sequences of the autophosphorylation sites of the IGF-1 receptor, on the activity of the human breast cancer cell lines MCF-7, T47D, MDA-MB-231, and MDA-MB-453. To facilitate peptide delivery into breast cancer cells, the cell-penetrating peptide, human immunodeficiency virus type 1-transactivator of transcription (Tat), was linked to these peptides. When breast cancer cells were treated with each of these synthetic Tat-conjugated peptides, the conjugated peptides penetrated into the cells and suppressed cell proliferation. An inhibitory effect of Tat-conjugated peptides against IGF-1-stimulated phosphorylation of IGF-1 receptors was observed. In addition, we found that combinations of these peptides suppressed phosphorylation of IGF-1 receptors to a greater extent than the peptides did individually. In conclusion, IGF-1 receptor autophosphorylation site-derived membrane-permeable peptides have the potential to suppress IGF-1 receptor function in breast cancer cells and to be developed into novel and useful agents for cancer therapy.
Collapse
Affiliation(s)
- Yoshihiro Kuroda
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Nahoko Kato-Kogoe
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan; Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Emi Tasaki
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Mayumi Yuasa-Sunagawa
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Koji Yamanegi
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | | | - Keiji Nakasyo
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Ikuhiko Nakase
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yumi Tohyama
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Munetaka Hirose
- Department of Anesthesiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| |
Collapse
|
2
|
Kurian LA, Silva TA, Sabatino D. Submonomer synthesis of azapeptide ligands of the Insulin Receptor Tyrosine Kinase domain. Bioorg Med Chem Lett 2014; 24:4176-80. [DOI: 10.1016/j.bmcl.2014.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
3
|
Kusalik A, Trost B, Bickis M, Fasano C, Capone G, Kanduc D. Codon number shapes peptide redundancy in the universal proteome composition. Peptides 2009; 30:1940-4. [PMID: 19591891 DOI: 10.1016/j.peptides.2009.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/25/2022]
Abstract
The proteomes catalogued in the UniRef100 database were collected into a single proteome set and examined for actual versus theoretical pentapeptide occurrences. We found a highly diversified degree of pentapeptide redundancy. Numerically, 953 pentamers are expressed only once in the protein world, whereas 103 pentamers occur more than 50,000 times. Moreover, it seems that 417 potentially possible pentapeptides are not present in the protein world. On the whole, tracing the redundancy profile of the protein world as a function of pentapeptide occurrences reveals a quasi-Gaussian curve, with tails representing scarcely and repeatedly occurring 5-mers. Analysis of physico-chemical-biological parameters shows that codon number is the main factor influencing and favoring specific pentapeptide frequencies in the universal proteome composition. That is, when compared to the set of never-expressed 5-mers, the pentapeptides frequently represented in the universal proteome are endowed with a higher number of multi-codonic amino acids. In contrast, the bulkiness degree and the hydrophobicity level play a smaller role. Unexpectedly, the heat of formation of pentapeptide appears to have the least influence.
Collapse
Affiliation(s)
- Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|