1
|
Miyamoto K, Tadokoro T, Matsumoto A. Unique E2-binding specificity of artificial RING fingers in cancer cells. Sci Rep 2024; 14:2545. [PMID: 38291082 PMCID: PMC10828389 DOI: 10.1038/s41598-024-52793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Ubiquitin (Ub)-conjugating enzymes (E2s) are involved in various pathways for Ub transfer and deubiquitinating activities. These enzymes are associated with cancers such as breast cancer which is the second deadliest type of malignancy among women. Here, we revealed the unique E2-binding property and the auto-ubiquitination of artificial RING fingers (ARFs). Circular dichroism spectra showed the characteristic structures of ARFs. The proline, lysine, leucine, threonine and cysteine (PKLTC) sequence of ARF was important for E2-recognition and its mutations induced obvious changes in the E2-binding specificity and the auto-ubiquitination activity of ARF. The ARF mutants were applicable to detection of most of E2 activities. Furthermore, adding the ARF mutant C35A to cancer cells promoted its auto-ubiquitination, leading to the preferential detection of E2 UbcH5b activity. The present work opens up a new avenue for investigating intracellular E2 activities for the fatal diseases.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda, Yamaguchi, 756-0884, Japan.
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Atsushi Matsumoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| |
Collapse
|
2
|
Miyamoto K, Matsumoto A. Artificial RING finger reveals unique auto-ubiquitination with E2 specificity. Protein Sci 2023; 32:e4766. [PMID: 37622280 PMCID: PMC10510468 DOI: 10.1002/pro.4766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub)-conjugating enzymes (E2s) transfer activated Ub from Ub-activating enzymes (E1s) to substrates and are associated with various cancers and neurological disorders. In this study, the unique properties of E2-binding and auto-ubiquitination of artificial RING fingers (ARFs) were demonstrated in ubiquitination assays. Circular dichroism spectra indicated the characteristic structures of ARFs. Point mutations of 31 PKLTC35 in ARF by tryptophan (Trp) resulted in dramatic changes in E2 specificity and the type of Ub chain elongation of mono- and polyubiquitination. The Trp residue was a cue that changed the ubiquitination activity of ARF via E2-binding. Furthermore, the ARF mutants interacted with all 11 E2s and then promoted auto-ubiquitination. Thus, the use of the ARF mutants allowed specific detection of E2 activities during ubiquitination. The present study opens up a new avenue for researching E2 activities related to the fatal diseases.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Faculty of Pharmaceutical SciencesSanyo‐Onoda City UniversityYamaguchiJapan
| | - Atsushi Matsumoto
- Faculty of Pharmaceutical SciencesSanyo‐Onoda City UniversityYamaguchiJapan
| |
Collapse
|
3
|
Miyamoto K, Migita K, Saito K. Solution structure of the zinc finger domain of human RNF144A ubiquitin ligase. Protein Sci 2020; 29:1836-1842. [PMID: 32557973 DOI: 10.1002/pro.3903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
RNF144A is involved in protein ubiquitination and functions as an ubiquitin-protein ligase (E3) via its RING finger domain (RNF144A RING). RNF144A is associated with degradation of heat-shock protein family A member 2 (HSPA2), which leads to the suppression of breast cancer cell proliferation. In this study, the solution structure of RNF144A RING was determined using nuclear magnetic resonance. Moreover, using a metallochromic indicator, we spectrophotometrically determined the stoichiometry of zinc ions and elucidated that RNF144A RING binds two zinc atoms. This structural analysis provided the position and range of the active site of RNF144A RING at the atomic level, which contributes to the creation of artificial RING fingers having the specific ubiquitin-conjugating enzyme (E2)-binding capability.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kaori Migita
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
4
|
Miyamoto K, Fujiwara Y, Saito K. Zinc finger domain of the human DTX protein adopts a unique RING fold. Protein Sci 2019; 28:1151-1156. [PMID: 30927328 DOI: 10.1002/pro.3610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
The Deltex (DTX) family is involved in ubiquitination and acts as Notch signaling modifiers for controlling cell fate determination. DTX promotes the development of the ubiquitin chain via its RING finger (DTX_RING). In this study, the solution structure of DTX_RING was determined using nuclear magnetic resonance (NMR). Moreover, by experiments with a metallochromic indicator, we spectrophotometrically estimated the stoichiometry of zinc ions and found that DTX_RING possesses zinc-binding capabilities. The Simple Modular Architecture Research Tool database predicted the structure of DTX_RING as a typical RING finger. However, the actual DTX_RING structure adopts a novel RING fold with a unique topology distinct from other RING fingers. We unveiled the position and the range of the DTX_RING active site at the atomic level. Artificial RING fingers (ARFs) are made by grafting active sites of the RING fingers onto cross-brace structure motifs. Therefore, the present structural analysis could be useful for designing a novel ARF.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Yuma Fujiwara
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
5
|
Miyamoto K, Taguchi Y, Saito K. Unique RING finger structure from the human HRD1 protein. Protein Sci 2018; 28:448-453. [PMID: 30345569 DOI: 10.1002/pro.3532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022]
Abstract
Artificial RING fingers (ARFs) are created by transplanting active sites of RING fingers onto cross-brace structures. Human hydroxymethylglutaryl-coenzyme A reductase degradation protein 1 (HRD1) is involved in the degradation of the endoplasmic reticulum (ER) proteins. HRD1 possesses the RING finger domain (HRD1_RING) that functions as a ubiquitin-ligating (E3) enzyme. Herein, we determined the solution structure of HRD1_RING using nuclear magnetic resonance (NMR). Moreover, using a metallochromic indicator, we determined the stoichiometry of zinc ions spectrophotometrically and found that HRD1_RING binds to two zinc atoms. The Simple Modular Architecture Research Tool database predicted the structure of HRD1_RING as a typical RING finger. However, it was found that the actual structure of HRD1_RING adopts an atypical RING-H2 type RING fold. This structural analysis unveiled the position and range of the active site of HRD1_RING that contribute to its specific ubiquitin-conjugating enzyme (E2)-binding capability.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Yukari Taguchi
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
6
|
Miyamoto K, Nakatani A, Sunagawa M, Saito K. Unique auto-ubiquitination activities of artificial RING fingers in cancer cells. Protein Sci 2018; 27:1704-1709. [PMID: 30152188 PMCID: PMC6194272 DOI: 10.1002/pro.3452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
Ubiquitin-conjugating (E2) enzymes in protein ubiquitination are associated with various diseases. An artificial RING finger (ARF) is a useful tool, and E2 activities are conveniently estimated based on ARF reactivities. To extend the use of ARF in cells, we constructed a TAT-ARF using a cell-penetrating trans-activator protein (TAT) peptide. An in vitro ubiquitination assay without substrates showed auto-ubiquitination of TAT-ARF via its TAT region. TAT-ARF was translocated into MCF7 breast cancer cells, and then TAT-ARF ubiquitinated itself via its ARF. Experiments using confocal laser-scanning microscopy revealed that FAM-labeled TAT-ARF was readily internalized in cells and it remained encapsulated in vesicles. The Cell Counting Kit-8 assay indicated that the TAT-ARF uptake occurred without cytotoxicity in MCF7 cells at concentrations below 5.0 μM. By taking advantage of TAT-ARF, we, for the first time, succeeded in detecting E2 activities in cells. Thus, the present work opens up new avenues in the investigation of protein ubiquitination.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHyogoJapan
| | - Arisa Nakatani
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHyogoJapan
| | - Mayumi Sunagawa
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHyogoJapan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHyogoJapan
| |
Collapse
|
7
|
Miyamoto K, Yamashita A, Saito K. Solution structure of the PHD finger from the human KIAA1045 protein. Protein Sci 2018; 27:987-992. [PMID: 29430827 DOI: 10.1002/pro.3389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 11/08/2022]
Abstract
Cross-brace structural motifs are required as a scaffold to design artificial RING fingers (ARFs) that function as ubiquitin ligase (E3) in ubiquitination and have specific ubiquitin-conjugating enzyme (E2)-binding capabilities. The Simple Modular Architecture Research Tool database predicted the amino acid sequence 131-190 (KIAA1045ZF) of the human KIAA1045 protein as an unidentified structural region. Herein, the stoichiometry of zinc ions estimated spectrophotometrically by the metallochromic indicator revealed that the KIAA1045ZF motif binds to two zinc atoms. The structure of the KIAA1045ZF motif bound to the zinc atoms was elucidated at the atomic level by nuclear magnetic resonance. The actual structure of the KIAA1045ZF motif adopts a C4 HC3 -type PHD fold belonging to the cross-brace structural family. Therefore, the utilization of the KIAA1045ZF motif as a scaffold may lead to the creation of a novel ARF.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Ayumi Yamashita
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
8
|
Miyamoto K, Nakatani A, Saito K. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure. Protein Sci 2017; 26:2451-2457. [PMID: 28906046 DOI: 10.1002/pro.3301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C4 C4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Arisa Nakatani
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
9
|
Miyamoto K, Uechi A, Saito K. The zinc finger domain of RING finger protein 141 reveals a unique RING fold. Protein Sci 2017; 26:1681-1686. [PMID: 28547869 DOI: 10.1002/pro.3201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/07/2022]
Abstract
Human RING finger protein 141 (RFP141) is a germ cell-specific transcription factor during spermatogenesis. We synthesized a compact construct encoding the C-terminal zinc finger of RFP141 (RFP141C peptide). Herein we determined the solution structure of the RFP141C peptide by nuclear magnetic resonance (NMR). Moreover, NMR data and the chemical modification of cysteine residues demonstrated that the RFP141C peptide binds to two zinc atoms in a cross-brace arrangement. The Simple Modular Architecture Research Tool database predicted the structure of RFP141C as a RING finger. However, the actual structure of the RFP141C peptide adopts an atypical compact C3 HC4 -type RING fold. The position and range of the helical active site of the RFP141C structure were elucidated at the atomic level. Therefore, structural analysis may allow RFP141C to be used for designing an artificial RING finger possessing specific ubiquitin-conjugating enzyme (E2)-binding capabilities.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Airi Uechi
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
10
|
Structural model of ubiquitin transfer onto an artificial RING finger as an E3 ligase. Sci Rep 2014; 4:6574. [PMID: 25300604 PMCID: PMC4192618 DOI: 10.1038/srep06574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022] Open
Abstract
The artificial WSTF PHD_EL5 RING finger was designed via "α-helical region substitution", and its structural model for the attachment of activated ubiquitin has been demonstrated. Chemical modifications of Cys residues, the circular dichroism spectra, and substrate-independent ubiquitination assays illustrated that the WSTF PHD_EL5 RING finger has E3 activity, and it is ubiquitinated via Lys14. Homology modeling calculations revealed that the WSTF PHD_EL5 RING finger possesses a classical RING fold for specific E2-E3 binding. The docking poses of the WSTF PHD_EL5 RING finger with the UbcH5b-ubiquitin conjugate provided insight into its functional E2 interaction and development of ubiquitination at the atomic level. The structural model of the artificial WSTF PHD_EL5 RING finger proposed by the present work is useful and may help to extend the strategy of α-helical region substitution.
Collapse
|
11
|
Miyamoto K. Ubiquitination of an artificial RING finger without a substrate and a tag. J Pept Sci 2011; 18:135-9. [PMID: 22113972 DOI: 10.1002/psc.1426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/11/2011] [Accepted: 09/14/2011] [Indexed: 11/09/2022]
Abstract
Alpha-helical region substitution was applied to the SIAH1 and EL5 RING fingers. The Williams-Beuren syndrome transcription factor (WSTF) PHD_SIAH1 and WSTF PHD_EL5 RING fingers were created as the artificial ubiquitin-ligating enzyme (E3). These fingers possess E3 activities of mono-ubiquitination and poly-ubiquitination, respectively, with ubiquitin-conjugating enzyme (E2)-binding capabilities. Artificial E3s bind two zinc atoms and adopt a zinc-dependent ordered structure and ubiquitinate upon themselves without a substrate and a tag. Ubiquitination experiments using biotinylated ubiquitin showed that the WSTF PHD_EL5 RING finger is poly-ubiquitinated via residue Lys(63) of ubiquitin. Substitution of alpha-helical region might be applicable to various RING fingers with mono-ubiquitination or poly-ubiquitination.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Himeji Dokkyo University, Himeji, Hyogo, Japan.
| |
Collapse
|
12
|
Miyamoto K, Togiya K. Solution structure of LC4 transmembrane segment of CCR5. PLoS One 2011; 6:e20452. [PMID: 21647380 PMCID: PMC3103582 DOI: 10.1371/journal.pone.0020452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 04/26/2011] [Indexed: 11/24/2022] Open
Abstract
CC-chemokine receptor 5 (CCR5) is a specific co-receptor allowing the entry of human immunodeficiency virus type 1 (HIV-1). The LC4 region in CCR5 is required for HIV-1 entry into the cells. In this study, the solution structure of LC4 in SDS micelles was elucidated by using standard 1H two-dimensional NMR spectroscopy, circular dichroism, and fluorescdence quenching. The LC4 structure adopts two helical structures, whereas the C-terminal part remains unstructured. The positions in which LC4 binds to the HIV-1 inhibitory peptide LC5 were determined by docking calculations in addition to NMR data. The poses showed the importance of the hydrophobic interface of the assembled structures. The solution structure of LC4 elucidated in the present work provides a structural basis for further studies on the HIV-1 inhibitory function of the LC4 region.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo, Japan.
| | | |
Collapse
|