1
|
Memariani M, Memariani H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 2023; 40:34. [PMID: 38057654 DOI: 10.1007/s11274-023-03852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Efficacy of Cathelicidin LL-37 in an MRSA Wound Infection Mouse Model. Antibiotics (Basel) 2021; 10:antibiotics10101210. [PMID: 34680791 PMCID: PMC8532939 DOI: 10.3390/antibiotics10101210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background: LL-37 is the only human antimicrobial peptide that belongs to the cathelicidins. The aim of the study was to evaluate the efficacy of LL-37 in the management of MRSA-infected surgical wounds in mice. Methods: A wound on the back of adult male BALB/c mice was made and inoculated with Staphylococcus aureus. Two control groups were formed (uninfected and not treated, C0; infected and not treated, C1) and six contaminated groups were treated, respectively, with: teicoplanin, LL-37, given topically and /or systemically. Histological examination of VEGF expression and micro-vessel density, and bacterial cultures of wound tissues, were performed. Results: Histological examination of wounds in the group treated with topical and intraperitoneal LL-37 showed increased re-epithelialization, formation of the granulation tissue, collagen organization, and angiogenesis. Conclusions: Based on the mode of action, LL-37 has a potential future role in the management of infected wounds.
Collapse
|
3
|
Morroni G, Sante LD, Simonetti O, Brescini L, Kamysz W, Kamysz E, Mingoia M, Brenciani A, Giovanetti E, Bagnarelli P, Giacometti A, Cirioni O. Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates. Future Microbiol 2021; 16:221-227. [PMID: 33646013 DOI: 10.2217/fmb-2020-0204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Overview: The global spread of antibiotic resistance represents a serious threat for public health. Aim: We evaluated the efficacy of the antimicrobial peptide LL-37 as antimicrobial agent against multidrug-resistant Escherichia coli. Results: LL-37 showed good activity against mcr-1 carrying, extended spectrum β-lactamase- and carbapenemase-producing E. coli (minimum inhibitory concentration, MIC, from 16 to 64 mg/l). Checkerboard assays demonstrated synergistic effect of LL-37/colistin combination against all tested strains, further confirmed by time-kill and post antibiotic effect assays. MIC and sub-MIC concentrations of LL-37 were able to reduce biofilm formation. Conclusion: Our preliminary data indicated that LL-37/colistin combination was effective against multidrug-resistant E. coli strains and suggested a new possible clinical application.
Collapse
Affiliation(s)
- Gianluca Morroni
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Laura Di Sante
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical & Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Wojciech Kamysz
- Faculty of Pharmacy, Medical University of Gdansk, Gdańsk, Poland
| | | | - Marina Mingoia
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life & Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Patrizia Bagnarelli
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Giacometti
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Department of Biomedical Sciences & Public Health, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
4
|
Fabisiak N, Fabisiak A, Chmielowiec-Korzeniowska A, Tymczyna L, Kamysz W, Kordek R, Bauer M, Kamysz E, Fichna J. Anti-inflammatory and antibacterial effects of human cathelicidin active fragment KR-12 in the mouse models of colitis: a novel potential therapy of inflammatory bowel diseases. Pharmacol Rep 2020; 73:163-171. [PMID: 33219923 PMCID: PMC7862075 DOI: 10.1007/s43440-020-00190-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Introduction Inflammatory bowel diseases (IBD) are a group of chronic gastrointestinal tract disorders with complex etiology, with intestinal dysbiosis as the most prominent factor. In this study, we assessed the anti-inflammatory and antibacterial actions of the human cathelicidin LL-37 and its shortest active fragment, KR-12 in the mouse models of colitis. Materials and methods Mouse models of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and dextran sulfate sodium (DSS) were used in the study. The extent of inflammation was evaluated based on the macro- and microscopic scores, quantification of myeloperoxidase (MPO) activity and microbiological analysis of stool samples. Results A preliminary study with LL-37 and KR-12 (1 mg/kg, ip, twice daily) showed a decrease in macroscopic and ulcer scores in the acute TNBS-induced model of colitis. We observed that KR-12 (5 mg/kg, ip, twice daily) reduced microscopic and ulcer scores in the semi-chronic and chronic TNBS-induced models of colitis compared with inflamed mice. Furthermore, qualitative and quantitative changes in colonic microbiota were observed: KR-12 (5 mg/kg, ip, twice daily) decreased the overall number of bacteria, Escherichia coli and coli group bacteria. In the semi-chronic DSS-induced model, KR-12 attenuated intestinal inflammation as demonstrated by a reduction in macroscopic score and colon damage score and MPO activity. Conclusions We demonstrated that KR-12 alleviates inflammation in four different mouse models of colitis what suggests KR-12 and cathelicidins as a whole are worth being considered as a potential therapeutic option in the treatment of IBD.
Collapse
Affiliation(s)
- Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
- Department of Gastroenterology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Leszek Tymczyna
- Department of Animal Hygiene and Environment, University of Agriculture in Lublin, Lublin, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Elżbieta Kamysz
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
5
|
Deslouches B, Montelaro RC, Urish KL, Di YP. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12060501. [PMID: 32486228 PMCID: PMC7357155 DOI: 10.3390/pharmaceutics12060501] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Correspondence: ; Tel.: +1-412-624-0103
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Ken L. Urish
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Yuanpu P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
| |
Collapse
|
6
|
Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front Microbiol 2020; 11:168. [PMID: 32153522 PMCID: PMC7046553 DOI: 10.3389/fmicb.2020.00168] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Can antimicrobial activity and peptide stability of alpha-helical peptides be increased by making them into dimers and macrocycles? Here, we explore that concept by using KR-12 as the starting point for peptide engineering. KR-12 has previously been determined as the minimalized antimicrobial fragment of the human host defense peptide LL-37. Backbone-cyclized KR-12 dimers, tethered by linkers of two to four amino acid residues, were synthesized and their antimicrobial activity, proteolytic stability and structures characterized. A modified KR-12 sequence, with substitutions at previously identified key residues, were also included in the screening panel. The backbone cyclized KR-12 dimers showed improved antimicrobial activity and increased stability compared to monomeric KR-12. The most active cyclic dimer displayed 16-fold higher antibacterial activity compared to KR-12 against Pseudomonas aeruginosa and Staphylococcus aureus, and 8-fold increased fungicidal activity against Candida albicans. It also showed increased hemolytic and cytotoxic activity. Enhanced antimicrobial activity coincided with increased membrane permeabilization of liposomes with one distinct discrepancy: monomeric KR-12 was much less disruptive of liposomes with bacterial lipid composition compared to liposomes from fungal lipid extract. Circular dichroism showed that the four-residue linked most active cyclic dimer had 65% helical content when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new macrocyclic form. In conclusion, the current work on KR-12 suggests that dimerization together with backbone cyclization is an effective strategy for improving both potency and stability of linear antimicrobial peptides.
Collapse
Affiliation(s)
- Sunithi Gunasekera
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Taj Muhammad
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Adam A Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Abstract
In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.
Collapse
|
8
|
Dutta J, Ramesh S, Radebe SM, Somboro AM, de la Torre BG, Kruger HG, Essack SY, Albericio F, Govender T. Optimized Microwave Assisted Synthesis of LL37, a Cathelicidin Human Antimicrobial Peptide. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9439-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Sikorska E, Kamysz E. Effect of head-to-tail cyclization on conformation of histatin-5. J Pept Sci 2014; 20:952-7. [DOI: 10.1002/psc.2707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Emilia Sikorska
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdansk Poland
| | - Elżbieta Kamysz
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdansk Poland
| |
Collapse
|