1
|
Jarmuła A, Zubalska M, Stępkowski D. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers. Int J Mol Sci 2022; 23:ijms23095247. [PMID: 35563639 PMCID: PMC9102079 DOI: 10.3390/ijms23095247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease is a fatal neurodegenerative malady which up to very recently did not have approved therapy modifying its course. After controversial approval of aducanumab (monoclonal antibody clearing β-amyloid plaques) by FDA for use in very early stages of disease, possibly new avenue opened for the treatment of patients. In line with this approach is search for compounds blocking aggregation into amyloid oligomers subsequently forming fibrils or compounds helping in getting rid of plaques formed by β-amyloid fibrils. Here we present in silico work on 627 sixtapeptide β-sheet breakers (BSBs) containing consecutive three aromatic residues. Three of these BSBs caused dissociation of one or two β-amyloid chains from U-shaped β-amyloid protofibril model 2BEG after docking and subsequent molecular dynamics simulations. Thorough analysis of our results let us postulate that the first steps of binding these successful BSBs involve π–π interactions with stacked chains of F19 and later also with F20 (F3 and F4 in 2BEG model of protofibril). The consecutive location of aromatic residues in BSBs makes them more attractive for chains of stacked F3 and F4 within the 2BEG model. Spotted by us, BSBs may be prospective lead compounds for an anti-Alzheimer’s therapy.
Collapse
Affiliation(s)
- Adam Jarmuła
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteur 3 St., 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-66-955-7696
| | - Monika Zubalska
- Faculty of Physics, University of Warsaw, Pasteur 5 St., 02-093 Warsaw, Poland;
| | - Dariusz Stępkowski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Pasteur 3 St., 02-093 Warsaw, Poland;
| |
Collapse
|
2
|
Pathak BK, Dey S, Mozumder S, Sengupta J. The role of membranes in function and dysfunction of intrinsically disordered amyloidogenic proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:397-434. [PMID: 35034725 DOI: 10.1016/bs.apcsb.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane-protein interactions play a major role in human physiology as well as in diseases pathology. Interaction of a protein with the membrane was previously thought to be dependent on well-defined three-dimensional structure of the protein. In recent decades, however, it has become evident that a large fraction of the proteome, particularly in eukaryotes, stays disordered in solution and these proteins are termed as intrinsically disordered proteins (IDPs). Also, a vast majority of human proteomes have been reported to contain substantially long disordered regions, called intrinsically disordered regions (IDRs), in addition to the structurally ordered regions. IDPs exist in an ensemble of conformations and the conformational flexibility enables IDPs to achieve functional diversity. IDPs (and IDRs) are found to be important players in cell signaling, where biological membranes act as anchors for signaling cascades. Therefore, IDPs modulate the membrane architectures, at the same time membrane composition also affects the binding of IDPs. Because of intrinsic disorders, misfolding of IDPs often leads to formation of oligomers, protofibrils and mature fibrils through progressive self-association. Accumulation of amyloid-like aggregates of some of the IDPs is a known causative agent for numerous diseases. In this chapter we highlight recent advances in understanding membrane interactions of some of the intrinsically disordered proteins involved in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Bani Kumar Pathak
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sandip Dey
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Jarmuła A, Ludwiczak J, Stępkowski D. β-sheet breakers with consecutive phenylalanines: Insights into mechanism of dissolution of β-amyloid fibrils. Proteins 2021; 89:762-780. [PMID: 33550630 DOI: 10.1002/prot.26057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/28/2020] [Accepted: 01/31/2021] [Indexed: 12/27/2022]
Abstract
β-sheet breakers (BSB) constitute a class of peptide inhibitors of amyloidogenesis, a process which is a hallmark of many diseases called amyloidoses, including Alzheimer's disease (AD); however, the molecular details of their action are still not fully understood. Here we describe the results of the computational investigation of the three BSBs, iaβ6 (LPFFFD), iaβ5 (LPFFD), and iaβ6_Gly (LPFGFD), in complex with the fibril model of Aβ42 and propose the kinetically probable mechanism of their action. The mechanism involves the binding of BSB to the central hydrophobic core (CHC) region (LVFFA) of Aβ fibril and the π-stacking of its Phe rings both internally and with the Aβ fibril. In the process, the Aβ fibril undergoes distortion accumulating on the side of chain A (located on the odd tip of the fibril). In a single replica of extended molecular dynamics run of one of the iaβ6 poses, the distortion concludes in a dissociation of chain A from the fibril model of Aβ42. Altogether, we postulate that including consecutive Phe residues into BSBs docked around Phe 20 in the CHC region of Aβ42 improve their potency for dissolution of fibrils.
Collapse
Affiliation(s)
- Adam Jarmuła
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| | - Jan Ludwiczak
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology PAS, Warszawa, Poland.,Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Dariusz Stępkowski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| |
Collapse
|
4
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
5
|
Rajasekhar K, Chakrabarti M, Govindaraju T. Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer's disease. Chem Commun (Camb) 2015; 51:13434-50. [DOI: 10.1039/c5cc05264e] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our Feature Article details the physiological role of amyloid beta (Aβ), elaborates its toxic effects and outlines therapeutic molecules designed in the last two years targeting different aspects of Aβ for preventing AD.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Malabika Chakrabarti
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
6
|
Zaman M, Ahmad E, Qadeer A, Rabbani G, Khan RH. Nanoparticles in relation to peptide and protein aggregation. Int J Nanomedicine 2014; 9:899-912. [PMID: 24611007 PMCID: PMC3928455 DOI: 10.2147/ijn.s54171] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, there has been considerable research interest in the use of nanoparticles in the study of protein and peptide aggregation, and of amyloid-related diseases. The influence of nanoparticles on amyloid formation yields great interest due to its small size and high surface area-to-volume ratio. Targeting nucleation kinetics by nanoparticles is one of the most searched for ways to control or induce this phenomenon. The observed effect of nanoparticles on the nucleation phase is determined by particle composition, as well as the amount and nature of the particle's surface. Various thermodynamic parameters influence the interaction of proteins and nanoparticles in the solution, and regulate the protein assembly into fibrils, as well as the disaggregation of preformed fibrils. Metals, organic particles, inorganic particles, amino acids, peptides, proteins, and so on are more suitable candidates for nanoparticle formulation. In the present review, we attempt to explore the effects of nanoparticles on protein and peptide fibrillation processes from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils). Their formulation and characterization by different techniques have been also addressed, along with their toxicological effects, both in vivo and in vitro.
Collapse
Affiliation(s)
- Masihuz Zaman
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Atiyatul Qadeer
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
8
|
Stefani M, Rigacci S. Protein folding and aggregation into amyloid: the interference by natural phenolic compounds. Int J Mol Sci 2013; 14:12411-57. [PMID: 23765219 PMCID: PMC3709793 DOI: 10.3390/ijms140612411] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/17/2023] Open
Abstract
Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
- Research Centre on the Molecular Basis of Neurodegeneration, Viale Morgagni 50, Florence 50134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-55-275-8307; Fax: +39-55-275-8905
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
| |
Collapse
|