1
|
Andrä J, Aisenbrey C, Sudheendra US, Prudhon M, Brezesinski G, Zschech C, Willumeit-Römer R, Leippe M, Gutsmann T, Bechinger B. Structural analysis of the NK-lysin-derived peptide NK-2 upon interaction with bacterial membrane mimetics consisting of phosphatidylethanolamine and phosphatidylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184267. [PMID: 38159877 DOI: 10.1016/j.bbamem.2023.184267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.
Collapse
Affiliation(s)
- Jörg Andrä
- Department of Biotechnology, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany.
| | | | - U S Sudheendra
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France
| | - Marc Prudhon
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France
| | - Gerald Brezesinski
- Department of Physics, TU Darmstadt, Darmstadt, Germany; Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Claudia Zschech
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | - Burkhard Bechinger
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France; Institut Universitaire de France, 75005 Paris, France.
| |
Collapse
|
2
|
Mercurio FA, Di Natale C, Pirone L, Iannitti R, Marasco D, Pedone EM, Palumbo R, Leone M. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors. Sci Rep 2017; 7:17474. [PMID: 29234063 PMCID: PMC5727260 DOI: 10.1038/s41598-017-17684-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.
Collapse
Affiliation(s)
- Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Concetta Di Natale
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Roberta Iannitti
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy.,Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Naples, Italy.
| |
Collapse
|
3
|
Wilms D, Andrä J. Comparison of patient-derived high and low phosphatidylserine-exposing colorectal carcinoma cells in their interaction with anti-cancer peptides. J Pept Sci 2017; 23:56-67. [PMID: 28066958 DOI: 10.1002/psc.2963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/10/2023]
Abstract
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dominik Wilms
- Faculty of Life Sciences, Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Jörg Andrä
- Faculty of Life Sciences, Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033, Hamburg, Germany
| |
Collapse
|
4
|
Maletzki C, Klier U, Marinkovic S, Klar E, Andrä J, Linnebacher M. Host defense peptides for treatment of colorectal carcinoma - a comparative in vitro and in vivo analysis. Oncotarget 2015; 5:4467-79. [PMID: 24962950 PMCID: PMC4147338 DOI: 10.18632/oncotarget.2039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Host defense peptides (HDP) constitute effector molecules of the innate immune system. Besides acting against microbia and fungi, they exhibit broad and selective oncolytic activity. The underlying mechanism is at least partially attributable to elevated surface-exposed levels of phosphatidylserine (PS) on tumor targets. In this study, comprehensive analysis of NK-2-based derivatives (C7A, C7A-D21K, and C7A-Δ) was done on patient-derived ultra-low passage colorectal carcinoma (CRC) cell lines. Peptides were designed to improve antitumoral potential. Mellitin was used as positive control and a non-toxic peptide (NK11) served as negative control. Subsequently, effectiveness of local HDP application was determined in xenopatients. Generally, CRC lines displayed a heterogeneous pattern of surface-exposed PS, which was usually below standard CRC cells. Of note, five out of seven cell lines were susceptible towards HDP-mediated lysis (lytic activity of peptides: C7A-D21K > C7A-Δ= C7A). Oncolytic activity correlated mostly with surface-exposed PS levels. Apoptosis as well as necrosis were involved in killing. In an in vivo experiment, substantial growth inhibition of HROC24 xenografts was observed after HDP therapy and, surprisingly, also after NK11 treatment. These promising data underline the high potential of HDPs for oncolytic therapies and may provide a rationale for optimizing preclinical treatment schedules based on NK-2.
Collapse
|