1
|
Koludarov I, Velasque M, Senoner T, Timm T, Greve C, Hamadou AB, Gupta DK, Lochnit G, Heinzinger M, Vilcinskas A, Gloag R, Harpur BA, Podsiadlowski L, Rost B, Jackson TNW, Dutertre S, Stolle E, von Reumont BM. Prevalent bee venom genes evolved before the aculeate stinger and eusociality. BMC Biol 2023; 21:229. [PMID: 37867198 PMCID: PMC10591384 DOI: 10.1186/s12915-023-01656-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.
Collapse
Affiliation(s)
- Ivan Koludarov
- Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany.
| | - Mariana Velasque
- Genomics & Regulatory Systems Unit, Okinawa Institute of Science & Technology, Tancha, Okinawa, 1919, Japan
| | - Tobias Senoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Deepak Kumar Gupta
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Andreas Vilcinskas
- Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Rosalyn Gloag
- Rosalyn Gloag - School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brock A Harpur
- Brock A. Harpur - Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907, USA
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Grattan Street, Parkville, Viktoria, 3010, Australia
| | | | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Group of Applied Bioinformatics, Goethe University Frankfurt, Max-Von-Laue Str. 13, 60438, Frankfurt, Germany.
| |
Collapse
|
2
|
Dashevsky D, Baumann K, Undheim EAB, Nouwens A, Ikonomopoulou MP, Schmidt JO, Ge L, Kwok HF, Rodriguez J, Fry BG. Functional and Proteomic Insights into Aculeata Venoms. Toxins (Basel) 2023; 15:toxins15030224. [PMID: 36977115 PMCID: PMC10053895 DOI: 10.3390/toxins15030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Aculeate hymenopterans use their venom for a variety of different purposes. The venom of solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their venom in defence of their colony. These distinct applications of venom suggest that its components and their functions are also likely to differ. This study investigates a range of solitary and social species across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro assays shed light on their biological activities. Although there were many common components identified in the venoms of species with different social behavior, there were also significant variations in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis mellifera) contained highly conserved toxins which match those identified by previous investigations. In contrast, venoms from less-studied taxa returned limited results from our proteomic databases, suggesting that they contain unique toxins.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
- Correspondence: (D.D.); (B.G.F.)
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A. B. Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, N-0316 Oslo, Norway
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, 4075 Madrid, Spain
| | - Justin O. Schmidt
- Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA
| | - Lilin Ge
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210046, China
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Juanita Rodriguez
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (D.D.); (B.G.F.)
| |
Collapse
|
3
|
K Bakhiet E, A M Hussien H, Elshehaby M. Apis mellifera Venom Inhibits Bacterial and Fungal Pathogens in vitro. Pak J Biol Sci 2022; 25:875-884. [PMID: 36404740 DOI: 10.3923/pjbs.2022.875.884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
<b>Background and Objective:</b> Bacterial and fungal infections are major public health problems. Emerging of drug-resistant microbial strains urges the need for the development of alternative untraditional antimicrobial agents. Bee venom is a rich source of secondary metabolites and antimicrobial agents. In this study, the antimicrobial and antifungal potential of <i>Apis mellifera</i> BV (<i>Am</i>BV) against some medically important bacterial and fungal pathogens was investigated. <b>Materials and Methods:</b> Broth microdilution method and Colony Forming Unit (CFU) assay were used to screen the antibacterial potential of <i>Am</i>BV. Similarly, the antifungal activity of <i>Am</i>BV was evaluated using the agar-well diffusion assay. Moreover, the minimum inhibitory concentration (MIC) values of <i>Am</i>BV against tested microorganisms were determined. <b>Results:</b> <i>Am</i>BV significantly inhibited bacterial and fungal growth. The MIC values of <i>Am</i>BV were 15.625, 31.25, 7.8, 7.8 μg mL<sup></sup><sup>1</sup> against <i>Escherichia coli</i> ATCC 8739, <i>Staphylococcus aureus</i> ATCC 6538P, <i>Serratia marcescens</i> AUH 98 and <i>Streptococcus mutans</i> ATCC 25175, respectively. Similarly, <i>Am</i>BV at concentrations of 300 and 600 μg mL<sup></sup><sup>1</sup> significantly inhibited the growth of <i>Aspergillus niger</i> ATCC 16404, <i>Alternaria alternata</i> MLBM09, <i>Fusarium oxysporum </i>MLBM212 and <i>Aspergillus flavus. </i><b>Conclusion:</b> These results indicated that<i> Am</i>BV could be used in future preclinical and clinical studies to develop cost-effective and efficient antibacterial and antifungal agents. Moreover, this study presents <i>Am</i>BV as an efficient alternative antimicrobial agent against medically important pathogens.
Collapse
|
4
|
von Reumont BM, Dutertre S, Koludarov I. Venom profile of the European carpenter bee Xylocopa violacea: Evolutionary and applied considerations on its toxin components. Toxicon X 2022; 14:100117. [PMID: 35309263 PMCID: PMC8927852 DOI: 10.1016/j.toxcx.2022.100117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022] Open
Abstract
Modern venomics is increasing its focus on hymenopterans such as honeybees, bumblebees, parasitoid wasps, ants and true wasps. However solitary bees remain understudied in comparison and the few available venom studies focus on short melittin-like sequences and antimicrobial peptides. Herein we describe the first comprehensive venom profile of a solitary bee, the violet carpenter bee Xylocopa violacea, by using proteo-transcriptomics. We reveal a diverse and complex venom profile with 43 different protein families identified from dissected venom gland extracts of which 32 are also detected in the defensively injected venom. Melittin and apamin are the most highly secreted components, followed by Phospholipase A2, Icarapin, Secapin and three novel components. Other components, including eight novel protein families, are rather lowly expressed. We further identify multiple forms of apamin-like peptides. The melittin-like sequences of solitary bees separate into two clades, one comprised most sequences from solitary bees including xylopin (the variant in Xylocopa), while sequences from Lasioglossa appear closer related to melittin-like peptides from Bombus (Bombolittins). Our study suggests that more proteo-transcriptomic data from other solitary bees should be complemented with corresponding genome data to fully understand the evolution and complexity of bee venom proteins, and is of a particular need to disentangle the ambiguous phylogenetic relations of short peptides.
Collapse
Affiliation(s)
- Björn M. von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438, Frankfurt am Main, Germany
- Justus Liebig University of Giessen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | | | - Ivan Koludarov
- Justus Liebig University of Giessen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| |
Collapse
|
5
|
Yamamura H, Hagiwara T, Hayashi Y, Osawa K, Kato H, Katsu T, Masuda K, Sumino A, Yamashita H, Jinno R, Abe M, Miyagawa A. Antibacterial Activity of Membrane-Permeabilizing Bactericidal Cyclodextrin Derivatives. ACS OMEGA 2021; 6:31831-31842. [PMID: 34870006 PMCID: PMC8638021 DOI: 10.1021/acsomega.1c04541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 05/08/2023]
Abstract
Antimicrobial peptides that act by disrupting bacterial membranes are attractive agents for treating drug-resistant bacteria. This study investigates a membrane-disrupting peptide mimic made of a cyclic oligosaccharide cyclodextrin scaffold that can be chemically polyfunctionalized. An antibacterial functional group on the peptide was simplified to an alkylamino group that combines cationic and hydrophobic moieties, the former to interact with the anionic bacterial membrane and the latter with the membrane interior. The cyclodextrins equipped with eight alkylamino groups on the molecules using a poly-click reaction exhibited antibacterial activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens such as carbapenem-resistant Enterobacteriaceae. Several lines of evidence showed that these agents disrupt bacterial membranes, leading to rapid bacterial cell death. The resulting membrane perturbation was directly visualized using high-speed atomic force microscopy imaging. In Gram-negative bacteria, the membrane-permeabilizing action of these derivatives allowed the entry of co-treated traditional antibiotics, which were then active against these bacteria.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Hagiwara
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuma Hayashi
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kayo Osawa
- Department
of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, Nagata-ku, Kobe 653-0838, Japan
| | - Hisato Kato
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Takashi Katsu
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Kazufumi Masuda
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Ayumi Sumino
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakumamachi, Kanazawa 920-1192, Japan
- Institute
for Frontier Science Initiative, Kanazawa
University, Kakumamachi, Kanazawa 920-1192, Japan
| | - Hayato Yamashita
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Jinno
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayuki Abe
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Miyagawa
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Tanuwidjaja I, Svečnjak L, Gugić D, Levanić M, Jurić S, Vinceković M, Mrkonjić Fuka M. Chemical Profiling and Antimicrobial Properties of Honey Bee ( Apis mellifera L.) Venom. Molecules 2021; 26:3049. [PMID: 34065282 PMCID: PMC8160683 DOI: 10.3390/molecules26103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The incidence of antibiotic resistance in pathogenic bacteria has become an alarming clinical and social problem. Therefore, the demand for alternative antimicrobial compounds has increased. In this study, a chemical profile of honey bee (Apis mellifera L.) venom (HBV) has been determined by HPLC and FTIR-ATR spectroscopy, and tested for antibacterial activity, as well as efficiency with regard to conventional antibiotics. The investigated HBV was of high quality with melittin and total protein contents of 70.10 ± 7.01%, and 84.44 ± 3.12 g/100 g, respectively. The purity of HBV was confirmed by FTIR-ATR spectral profiling, which revealed a unique pattern of absorption bands that are characteristic of its major fractions. In addition, HBV showed a broad spectrum of activity against all three tested biomasses of potentially pathogenic Gram-positive and Gram-negative bacteria with MIC values ranging between 12.5 and 200 µg/mL, and MBC between 12.5 and 400 µg/mL. When compared to conventional antibiotics, HBV (400 µg) showed up to 27.8% efficiency of tetracycline (30 µg), 52.2% erythromycin (15 µg), 21.2% ciprofloxacin (5 µg), and 34.6% of ampicillin-sulbactam (20 µg). The overall results demonstrate the therapeutic potential of the analyzed HBV.
Collapse
Affiliation(s)
- Irina Tanuwidjaja
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.T.); (D.G.); (M.M.F.)
| | - Lidija Svečnjak
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Domenika Gugić
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.T.); (D.G.); (M.M.F.)
| | - Marko Levanić
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Slaven Jurić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (M.V.)
| | - Marko Vinceković
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (M.V.)
| | - Mirna Mrkonjić Fuka
- Department of Microbiology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.T.); (D.G.); (M.M.F.)
| |
Collapse
|
7
|
Lamiyan AK, Dalal R, Kumar NR. Venom peptides in association with standard drugs: a novel strategy for combating antibiotic resistance - an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200001. [PMID: 32843888 PMCID: PMC7416788 DOI: 10.1590/1678-9199-jvatitd-2020-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Ramkesh Dalal
- Department of Zoology, Panjab University, Chandigarh, India
| | | |
Collapse
|
8
|
Interaction of Halictine-Related Antimicrobial Peptides with Membrane Models. Int J Mol Sci 2019; 20:ijms20030631. [PMID: 30717183 PMCID: PMC6387077 DOI: 10.3390/ijms20030631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/19/2023] Open
Abstract
We have investigated structural changes of peptides related to antimicrobial peptide Halictine-1 (HAL-1) induced by interaction with various membrane-mimicking models with the aim to identify a mechanism of the peptide mode of action and to find a correlation between changes of primary/secondary structure and biological activity. Modifications in the HAL-1 amino acid sequence at particular positions, causing an increase of amphipathicity (Arg/Lys exchange), restricted mobility (insertion of Pro) and consequent changes in antimicrobial and hemolytic activity, led to different behavior towards model membranes. Secondary structure changes induced by peptide-membrane interaction were studied by circular dichroism, infrared spectroscopy, and fluorescence spectroscopy. The experimental results were complemented by molecular dynamics calculations. An α-helical structure has been found to be necessary but not completely sufficient for the HAL-1 peptides antimicrobial action. The role of alternative conformations (such as β-sheet, PPII or 310-helix) also seems to be important. A mechanism of the peptide mode of action probably involves formation of peptide assemblies (possibly membrane pores), which disrupt bacterial membrane and, consequently, allow membrane penetration.
Collapse
|
9
|
Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Peptidomic analysis of the venom of the solitary bee Xylocopa appendiculata circumvolans. J Venom Anim Toxins Incl Trop Dis 2017; 23:40. [PMID: 28855917 PMCID: PMC5575948 DOI: 10.1186/s40409-017-0130-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023] Open
Abstract
Background Among the hymenopteran insect venoms, those from social wasps and bees – such as honeybee, hornets and paper wasps – have been well documented. Their venoms are composed of a number of peptides and proteins and used for defending their nests and themselves from predators. In contrast, the venoms of solitary wasps and bees have not been the object of further research. In case of solitary bees, only major peptide components in a few venoms have been addressed. Therefore, the aim of the present study was to explore the peptide component profile of the venom from the solitary bee Xylocopa appendiculata circumvolans by peptidomic analysis with using LC-MS. Methods A reverse-phase HPLC connected to ESI-OrbiTrap MS was used for LC-MS. On-line mass fingerprinting was made from TIC, and data-dependent tandem mass spectrometry gave MSMS spectra. A major peptide component was isolated by reverse-phase HPLC by conventional way, and its sequence was determined by Edman degradation, which was finally corroborated by solid phase synthesis. Using the synthetic specimen, biological activities (antimicrobial activity, mast cell devaluation, hemolysis, leishmanicidal activity) and pore formation in artificial lipid bilayer were evaluated. Results On-line mass fingerprinting revealed that the crude venom contained 124 components. MS/MS analysis gave 75 full sequences of the peptide components. Most of these are related to the major and novel peptide, xylopin. Its sequence, GFVALLKKLPLILKHLH-NH2, has characteristic features of linear cationic α-helical peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, it can be predicted to adopt an amphipathic α-helix secondary structure. In biological evaluation, xylopin exhibited broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity. Additionally, the peptide was able to incorporate pores in artificial lipid bilayers of azolectin, confirming the mechanism of the cytolytic activity by pore formation in biological membranes. Conclusions LC-ESI-MS and MS/MS analysis of the crude venom extract from a solitary bee Xylocopa appendiculata circumvolans revealed that the component profile of this venom mostly consisted of small peptides. The major peptide components, xylopin and xylopinin, were purified and characterized in a conventional manner. Their chemical and biological characteristics, belonging to linear cationic α-helical peptides, are similar to the known solitary bee venom peptides, melectin and osmin. Pore formation in artificial lipid bilayers was demonstrated for the first time with a solitary bee peptide.
Collapse
|
11
|
Kawakami H, Goto SG, Murata K, Matsuda H, Shigeri Y, Imura T, Inagaki H, Shinada T. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata. J Venom Anim Toxins Incl Trop Dis 2017; 23:29. [PMID: 28546807 PMCID: PMC5442655 DOI: 10.1186/s40409-017-0119-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Background Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. Methods The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Results Three novel peptides with m/z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata. The peptide with m/z 16508 was characterized as a secretory phospholipase A2 (PLA2) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA2s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. Conclusion We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0119-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroko Kawakami
- Graduate School of Material Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| | - Shin G Goto
- Graduate School of Science, Department of Biology & Geosciences, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| | - Kazuya Murata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 Japan
| | - Hideaki Matsuda
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 Japan
| | - Yasushi Shigeri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Tomohiro Imura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hidetoshi Inagaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Tetsuro Shinada
- Graduate School of Material Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| |
Collapse
|
12
|
Yamamura H, Mabuchi T, Ishida T, Miyagawa A. Syntheses and structure-membrane active antimicrobial activity relationship of alkylamino-modified glucose, maltooligosaccharide, and amylose. Chem Biol Drug Des 2017; 90:1012-1018. [DOI: 10.1111/cbdd.12989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Hatsuo Yamamura
- Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
- Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| | - Takahiro Mabuchi
- Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| | - Tomoki Ishida
- Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| | - Atsushi Miyagawa
- Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
- Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| |
Collapse
|
13
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
14
|
Kocourková L, Novotná P, Čujová S, Čeřovský V, Urbanová M, Setnička V. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:247-255. [PMID: 27450123 DOI: 10.1016/j.saa.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.
Collapse
Affiliation(s)
- Lucie Kocourková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavlína Novotná
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Sabína Čujová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
15
|
Zolfagharian H, Mohajeri M, Babaie M. Bee Venom (Apis Mellifera) an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains: Bee Venom an Effective Potential for Bacteria. J Pharmacopuncture 2016; 19:225-230. [PMID: 27695631 PMCID: PMC5043086 DOI: 10.3831/kpi.2016.19.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Mellitine, a major component of bee venom (BV, Apis mellifera), is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has been reported to have antibacterial properties. The aim of this study was to evaluate the antibacterial activity of BV against selected gram positive and gram negative bacterial strains of medical importance. METHODS This investigation was set up to evaluate the antibacterial activity of BV against six grams positive and gram negative bacteria, including Staphylococcus aureus (S. aureus), Salmonella typhimurium, Escherichia coli (E. coli) O157:H7, Pseudomonas aeruginosa, Burkholderia mallei and Burkholderia pseudomallei. Three concentrations of crude BV and standard antibiotic (gentamicin) disks as positive controls were tested by using the disc diffusion method. RESULTS BV was found to have a significant antibacterial effect against E. coli, S. aureus, and Salmonella typhyimurium in all three concentrations tested. However, BV had no noticeable effect on other tested bacteria for any of the three doses tested. CONCLUSION The results of the current study indicate that BV inhibits the growth and survival of bacterial strains and that BV can be used as a complementary antimicrobial agent against pathogenic bacteria. BV lacked the effective proteins necessary for it to exhibit antibacterial activity for some specific strains while being very effective against other specific strains. Thus, one may conclude, that Apis mellifera venom may have a specific mechanism that allows it to have an antibacterial effect on certain susceptible bacteria, but that mechanism is not well understood.
Collapse
Affiliation(s)
- Hossein Zolfagharian
- Department of Venomous Animals and Antivenom Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of medical Science, Mashhad, Iran
| | - Mahdi Babaie
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Vibrational and electronic circular dichroism as powerful tools for the conformational analysis of cationic antimicrobial peptides. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1807-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Nešuta O, Hexnerová R, Buděšínský M, Slaninová J, Bednárová L, Hadravová R, Straka J, Veverka V, Čeřovský V. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics. JOURNAL OF NATURAL PRODUCTS 2016; 79:1073-1083. [PMID: 26998557 DOI: 10.1021/acs.jnatprod.5b01129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL.
Collapse
Affiliation(s)
- Ondřej Nešuta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague , Technická 5, 166 28 Prague 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University in Prague , Viničná 7, 12843 Prague 2, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
18
|
Zerweck J, Strandberg E, Bürck J, Reichert J, Wadhwani P, Kukharenko O, Ulrich AS. Homo- and heteromeric interaction strengths of the synergistic antimicrobial peptides PGLa and magainin 2 in membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:535-47. [PMID: 27052218 DOI: 10.1007/s00249-016-1120-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
PGLa and magainin 2 (MAG2) are amphiphilic α-helical frog peptides with synergistic antimicrobial activity. In vesicle leakage assays we observed the strongest synergy for equimolar mixtures of PGLa and MAG2. This result was consistent with solid-state (15)N-NMR data on the helix alignment in model membranes. The Hill coefficients determined from the vesicle leakage data showed that the heterodimeric (PGLa-MAG2) interactions were stronger than the homodimeric (PGLa-PGLa and MAG2-MAG2) interactions. This result was also reflected in the free energy of dimerization determined from oriented circular dichroism and quantitative solid-state (19)F-NMR analysis.
Collapse
Affiliation(s)
- Jonathan Zerweck
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Erik Strandberg
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Johannes Reichert
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Parvesh Wadhwani
- KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany
| | - Olga Kukharenko
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany. .,KIT, Institute of Biological Interfaces (IBG-2), POB 3640, 76021, Karlsruhe, Germany.
| |
Collapse
|