1
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Liu J, Wei T, Tan Y, Liu H, Li X. Enabling chemical protein (semi)synthesis via reducible solubilizing tags (RSTs). Chem Sci 2022; 13:1367-1374. [PMID: 35222920 PMCID: PMC8809390 DOI: 10.1039/d1sc06387a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
The reducible solubilizing tag strategy served as a simple and powerful method for the chemical synthesis and semi-synthesis via Ser/Thr ligation and Cys/Pen ligation of extensive self-assembly peptides, membrane proteins with poor solubility.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Huang DL, Li Y, Zheng JS. Removable Backbone Modification (RBM) Strategy for the Chemical Synthesis of Hydrophobic Peptides/Proteins. Methods Mol Biol 2022; 2530:241-256. [PMID: 35761053 DOI: 10.1007/978-1-0716-2489-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical synthesis can provide hydrophobic proteins with natural or man-made modifications (e.g. S-palmitoylation, site-specific isotope labeling and mirror-image proteins) that are difficult to obtain through the recombinant expression technology. The difficulty of chemical synthesis of hydrophobic proteins stems from the hydrophobic nature. Removable backbone modificaiton (RBM) strategy has been developed for solubilizing the hydrophobic peptides/proteins. Here we take the chemical synthesis of a S-palmitoylated peptide as an example to describe the detailed procedure of RBM strategy. Three critical steps of this protocol are: (1) installation of Lys6-tagged RBM groups into the peptides by Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis, (2) chemical ligation of the peptides, and (3) removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to give the target peptide.
Collapse
Affiliation(s)
- Dong-Liang Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Naider F, Becker JM. A Paradigm for Peptide Hormone-GPCR Analyses. Molecules 2020; 25:E4272. [PMID: 32961885 PMCID: PMC7570734 DOI: 10.3390/molecules25184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Work from our laboratories over the last 35 years that has focused on Ste2p, a G protein-coupled receptor (GPCR), and its tridecapeptide ligand α-factor is reviewed. Our work utilized the yeast Saccharomyces cerevisiae as a model system for understanding peptide-GPCR interactions. It explored the structure and function of synthetic α-factor analogs and biosynthetic receptor domains, as well as designed mutations of Ste2p. The results and conclusions are described using the nuclear magnetic resonance interrogation of synthetic Ste2p transmembrane domains (TMs), the fluorescence interrogation of agonist and antagonist binding, the biochemical crosslinking of peptide analogs to Ste2p, and the phenotypes of receptor mutants. We identified the ligand-binding domain in Ste2p, the functional assemblies of TMs, unexpected and interesting ligand analogs; gained insights into the bound α-factor structure; and unraveled the function and structures of various Ste2p domains, including the N-terminus, TMs, loops connecting the TMs, and the C-terminus. Our studies showed interactions between specific residues of Ste2p in an active state, but not resting state, and the effect of ligand activation on the dimerization of Ste2p. We show that, using a battery of different biochemical and genetic approaches, deep insight can be gained into the structure and conformational dynamics of GPCR-peptide interactions in the absence of a crystal structure.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, 610 Ken and Blaire Mossman Building, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Li Y, Cao X, Tian C, Zheng JS. Chemical protein synthesis-assisted high-throughput screening strategies for d-peptides in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Enhancing native chemical ligation for challenging chemical protein syntheses. Curr Opin Chem Biol 2020; 58:37-44. [PMID: 32745915 DOI: 10.1016/j.cbpa.2020.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023]
Abstract
Native chemical ligation has enabled the chemical synthesis of proteins for a wide variety of applications (e.g., mirror-image proteins). However, inefficiencies of this chemoselective ligation in the context of large or otherwise challenging protein targets can limit the practical scope of chemical protein synthesis. In this review, we focus on recent developments aimed at enhancing and expanding native chemical ligation for challenging protein syntheses. Chemical auxiliaries, use of selenium chemistry, and templating all enable ligations at otherwise suboptimal junctions. The continuing development of these tools is making the chemical synthesis of large proteins increasingly accessible.
Collapse
|
7
|
|
8
|
Huang DL, Li Y, Liang J, Yu L, Xue M, Cao XX, Xiao B, Tian CL, Liu L, Zheng JS. The New Salicylaldehyde S,S-Propanedithioacetal Ester Enables N-to-C Sequential Native Chemical Ligation and Ser/Thr Ligation for Chemical Protein Synthesis. J Am Chem Soc 2020; 142:8790-8799. [DOI: 10.1021/jacs.0c01561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong-Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ying Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jun Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Min Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiu-Xiu Cao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Lin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
9
|
Lithium chloride: An efficient additive for the synthesis of α-conotoxin PnIA(A10L) in the Fmoc solid phase strategy. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Masuda S, Tsuda S, Yoshiya T. A trimethyllysine-containing trityl tag for solubilizing hydrophobic peptides. Org Biomol Chem 2019; 17:10228-10236. [PMID: 31782417 DOI: 10.1039/c9ob02253h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydrophobic membrane peptides/proteins having low water solubility are often difficult to prepare. To overcome this issue, temporal introduction of solubilizing tags has been demonstrated to be beneficial. Following our recent work on the solubilization of a difficult target by using a hydrophilic oligo-Lys tag bearing a trityl linker (Trt-K method), this paper describes a comparative study of the solubilizing abilities of several peptidic trityl tags containing Lys, Arg, Glu, Asn, Nε-tri-Me-Lys or Cys-sulfonate using two hydrophobic model peptides. Among the tags evaluated, that containing Nε-tri-Me-Lys exhibits superior solubilizing ability.
Collapse
Affiliation(s)
- Shun Masuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Shugo Tsuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | - Taku Yoshiya
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
11
|
Tsuda S, Masuda S, Yoshiya T. Solubilizing Trityl‐Type Tag To Synthesize Asx/Glx‐Containing Peptides. Chembiochem 2019; 20:2063-2069. [DOI: 10.1002/cbic.201900193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
12
|
Yoshiya T, Tsuda S, Masuda S. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. Chembiochem 2019; 20:1906-1913. [DOI: 10.1002/cbic.201900105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
13
|
Zhao DD, Fan XW, Hao H, Zhang HL, Guo Y. Temporary Solubilizing Tags Method for the Chemical Synthesis of Hydrophobic Proteins. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666181211121758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrophobic proteins, as one of the cellular protein classifications, play an essential function in maintaining the normal life cycle of living cells. Researches on the structure and function of hydrophobic proteins promote the exploration of the causes of major diseases, and development of new therapeutic agents for disease treatment. However, the poor water solubility of hydrophobic proteins creates problems for their preparation, separation, characterization and functional studies. The temporary solubilizing tags are considered a practical strategy to effectively solve the poor water solubility problem of hydrophobic proteins. This strategy can significantly improve the water solubility of hydrophobic peptides/proteins, making them like water-soluble peptides/proteins easy to be purified, characterized. More importantly, the temporary solubilizing tags can be removed after protein synthesis, so thus the structure and function of the hydrophobic proteins are not affected. At present, temporary solubilizing tags have been successfully used to prepare many important hydrophobic proteins such as membrane proteins, lipoproteins and chaperones. In this review, we summarize the recent researches and applications of temporary solubilizing tags.
Collapse
Affiliation(s)
- Dong-Dong Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Xiao-Wen Fan
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - He Hao
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Hong-Li Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia 014060, China
| |
Collapse
|
14
|
Hayashi G, Yanase M, Nakatsuka Y, Okamoto A. Simultaneous and Traceless Ligation of Peptide Fragments on DNA Scaffold. Biomacromolecules 2019; 20:1246-1253. [PMID: 30677290 DOI: 10.1021/acs.biomac.8b01655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peptide ligation is an indispensable step in the chemical synthesis of target peptides and proteins that are difficult to synthesize at once by a solid-phase synthesis. The ligation reaction is generally conducted with two peptide fragments at a high aqueous concentration to increase the reaction rate; however, this often causes unpredictable aggregation and precipitation of starting or resulting peptides due to their hydrophobicities. Here, we have developed a novel peptide ligation strategy harnessing the two intrinsic characteristics of oligodeoxynucleotides (ODNs), i.e., their hydrophilicity and hybridization ability, which allowed increases in the water solubility of peptides and the reaction kinetics due to the proximity effect, respectively. Peptide-ODN conjugates that can be cleaved to regenerate native peptide sequences were synthesized using novel lysine derivatives containing conjugation handles and photolabile linkers, via solid-phase peptide synthesis and subsequent conjugation to 15-mer ODNs. Two complementary conjugates were applied to carbodiimide-mediated peptide ligation on a DNA scaffold, and the subsequent DNA removal was conducted by photoirradiation in a traceless fashion. This DNA scaffold-assisted ligation resulted in a significant acceleration of the reaction kinetics and enabled ligation of a hydrophobic peptide at a micromolar concentration. On the basis of this chemistry, a simultaneous ligation of three different peptide fragments on two different DNA scaffolds has been conducted for the first time.
Collapse
Affiliation(s)
- Gosuke Hayashi
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Masafumi Yanase
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yu Nakatsuka
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan.,Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| |
Collapse
|
15
|
Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9401-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
17
|
Baumruck AC, Tietze D, Steinacker LK, Tietze AA. Chemical synthesis of membrane proteins: a model study on the influenza virus B proton channel. Chem Sci 2018; 9:2365-2375. [PMID: 29719709 PMCID: PMC5897842 DOI: 10.1039/c8sc00004b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
NCL results in the quantitative yield of a membrane protein, where a thioester peptide is formed from an oxo-ester with an in situ cleavable solubilizing tag.
In the present study we have developed and optimized a robust strategy for the synthesis of highly hydrophobic peptides, especially membrane proteins, exemplarily using the influenza B M2 proton channel (BM2(1–51)). This strategy is based on the native chemical ligation of two fragments, where the thioester fragment is formed from an oxo-ester peptide, which is synthesized using Fmoc-SPPS, and features an in situ cleavable solubilizing tag (ADO, ADO2 or ADO-Lys5). The nearly quantitative production of the ligation product was followed by an optimized work up protocol, resulting in almost quantitative desulfurization and Acm-group cleavage. Circular dichroism analysis in a POPC lipid membrane revealed that the synthetic BM2(1–51) construct adopts a helical structure similar to that of the previously characterized BM2(1–33).
Collapse
Affiliation(s)
- A C Baumruck
- Darmstadt University of Technology , Clemens-Schöpf Institute of Organic Chemistry and Biochemistry , Alarich-Weiss Str. 4 , 64287 Darmstadt , Germany .
| | - D Tietze
- Darmstadt University of Technology , Eduard-Zintl-Institute of Inorganic and Physical Chemistry , Alarich-Weiss-Str. 4 , 64287 Darmstadt , Germany
| | - L K Steinacker
- Darmstadt University of Technology , Clemens-Schöpf Institute of Organic Chemistry and Biochemistry , Alarich-Weiss Str. 4 , 64287 Darmstadt , Germany .
| | - A A Tietze
- Darmstadt University of Technology , Clemens-Schöpf Institute of Organic Chemistry and Biochemistry , Alarich-Weiss Str. 4 , 64287 Darmstadt , Germany .
| |
Collapse
|
18
|
Chemical synthesis of membrane proteins by the removable backbone modification method. Nat Protoc 2017; 12:2554-2569. [DOI: 10.1038/nprot.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Total chemical synthesis of histones and their analogs, assisted by native chemical ligation and palladium complexes. Nat Protoc 2017; 12:2293-2322. [PMID: 28981125 DOI: 10.1038/nprot.2017.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical synthesis of histones allows precise control of the installation of post-translational modifications via the coupling of derivatized amino acids. Shortcomings of other approaches for obtaining modified histones for epigenetic studies include heterogeneity of the obtained product and difficulties in incorporating multiple modifications on the same histone. In this protocol, unprotected peptide fragments are prepared by Fmoc solid-phase synthesis and coupled in aqueous buffers via native chemical ligation (NCL; in NCL, a peptide bond is formed between a peptide with an N-terminal Cys and another peptide having a C-terminal thioester). This task is challenging, with obstacles relating to the preparation and ligation of hydrophobic peptides, as well as the requirement for multiple purification steps due to protecting-group manipulations during the polypeptide assembly process. To address this, our approach uses an easily removable solubilizing tag for the synthesis and ligation of hydrophobic peptides, as well as a more efficient and better-yielding method to remove Cys-protecting groups that uses palladium chemistry (specifically [Pd(allyl)Cl]2 and PdCl2 complexes). The utility of this approach is demonstrated in the syntheses of ubiquitinated H2B at Lys34, phosphorylated H2A at Tyr57 and unmodified H4. Each of these analogs can be prepared in milligram quantities within ∼20-30 d.
Collapse
|
20
|
Li JB, Tang S, Zheng JS, Tian CL, Liu L. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins. Acc Chem Res 2017; 50:1143-1153. [PMID: 28374993 DOI: 10.1021/acs.accounts.7b00001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical synthesis can produce water-soluble globular proteins bearing specifically designed modifications. These synthetic molecules have been used to study the biological functions of proteins and to improve the pharmacological properties of protein drugs. However, the above advances notwithstanding, membrane proteins (MPs), which comprise 20-30% of all proteins in the proteomes of most eukaryotic cells, remain elusive with regard to chemical synthesis. This difficulty stems from the strong hydrophobic character of MPs, which can cause considerable handling issues during ligation, purification, and characterization steps. Considerable efforts have been made to improve the solubility of transmembrane peptides for chemical ligation. These methods can be classified into two main categories: the manipulation of external factors and chemical modification of the peptide. This Account summarizes our research advances in the development of chemical modification especially the two generations of removable backbone modification (RBM) strategy for the chemical synthesis of MPs. In the first RBM generation, we install a removable modification group at the backbone amide of Gly within the transmembrane peptides. In the second RBM generation, the RBM group can be installed into all primary amino acid residues. The second RBM strategy combines the activated intramolecular O-to-N acyl transfer reaction, in which a phenyl group remains unprotected during the coupling process, which can play a catalytic role to generate the activated phenyl ester to assist in the formation of amide. The key feature of the RBM group is its switchable stability in trifluoroacetic acid. The stability of these backbone amide N-modifications toward TFA can be modified by regulating the electronic effects of phenol groups. The free phenol group is acylated to survive the TFA deprotection step, while the acyl phenyl ester will be quantitatively hydrolyzed in a neutral aqueous solution, and the free phenol group increases the electron density of the benzene ring to make the RBM labile to TFA. The transmembrane peptide segment bearing RBM groups behaves like a water-soluble peptide during fluorenylmethyloxycarbonyl based solid-phase peptide synthesis (Fmoc SPPS), ligation, purification, and characterization. The quantitative removal of the RBM group can be performed to obtain full-length MPs. The RBM strategy was used to prepare the core transmembrane domain Kir5.1[64-179] not readily accessible by recombinant protein expression, the influenza A virus M2 proton channel with phosphorylation, the cation-specific ion channel p7 from the hepatitis C virus with site-specific NMR isotope labels, and so on. The RBM method enables the practical engineering of small- to medium-sized MPs or membrane protein domains to address fundamental questions in the biochemical, biophysical, and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jia-Bin Li
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Chang-Lin Tian
- School of Life Sciences, University of Science and Technology of China , Hefei 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
21
|
Jacobsen MT, Petersen ME, Ye X, Galibert M, Lorimer GH, Aucagne V, Kay MS. A Helping Hand to Overcome Solubility Challenges in Chemical Protein Synthesis. J Am Chem Soc 2016; 138:11775-82. [PMID: 27532670 DOI: 10.1021/jacs.6b05719] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Mark E Petersen
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| | - Xiang Ye
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Mathieu Galibert
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - George H Lorimer
- Department of Chemistry & Biochemistry, 8051 Regents Drive, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR4301 , Rue Charles Sadron, Orléans CEDEX 2 45071, France
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine , 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, United States
| |
Collapse
|
22
|
Maity SK, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis. Org Lett 2016; 18:3026-9. [PMID: 27268382 DOI: 10.1021/acs.orglett.6b01442] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible attachment of solubilizing tags to hydrophobic peptides to facilitate their purification and ligation is an essential yet challenging task in chemical protein synthesis. The efficient palladium-assisted removal of the solubilizing tag linked to the Cys side chain is reported. The strategy was applied for the efficient preparation of histone protein H4 from two fragments via one-pot operation of ligation, removal of the solubilizing tag, and desulfurization.
Collapse
Affiliation(s)
- Suman Kumar Maity
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Mann
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Muhammad Jbara
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Shay Laps
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Guy Kamnesky
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|
23
|
Qi YK, Chang HN, Pan KM, Tian CL, Zheng JS. Total chemical synthesis of the site-selective azide-labeled [I66A]HIV-1 protease. Chem Commun (Camb) 2016; 51:14632-5. [PMID: 26289550 DOI: 10.1039/c5cc04846j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The first total chemical synthesis of the site-selective azide-labeled [I66A]HIV-1 protease is described by native chemical ligation. Chemical synthesis of azide-labeled proteins would provide useful protein tools for biochemical, biophysical or medical studies.
Collapse
Affiliation(s)
- Yun-Kun Qi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.
| | | | | | | | | |
Collapse
|
24
|
Zuo C, Tang S, Si YY, Wang ZA, Tian CL, Zheng JS. Efficient synthesis of longer Aβ peptides via removable backbone modification. Org Biomol Chem 2016; 14:5012-8. [DOI: 10.1039/c6ob00712k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a new method for the efficient chemical synthesis of longer Aβ peptides with the combination of the RBM strategy and native chemical ligation.
Collapse
Affiliation(s)
- Chao Zuo
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
| | - Shan Tang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yan-Yan Si
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhipeng A. Wang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
25
|
Hojo H. A strategy for the synthesis of hydrophobic proteins and glycoproteins. Org Biomol Chem 2016; 14:6368-74. [DOI: 10.1039/c6ob00827e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrophobic glycoprotein was successfully synthesized by the reverse polarity protection strategy combined with the O-acylisopeptide method, which will be useful for the synthesis of various hydrophobic (glyco)proteins.
Collapse
Affiliation(s)
- Hironobu Hojo
- Institute for Protein Research
- Osaka University
- Suita
- Japan
| |
Collapse
|