1
|
Dong Y, Ma T, Xu T, Feng Z, Li Y, Song L, Yao X, Ashby CR, Hao GF. Characteristic roadmap of linker governs the rational design of PROTACs. Acta Pharm Sin B 2024; 14:4266-4295. [PMID: 39525578 PMCID: PMC11544172 DOI: 10.1016/j.apsb.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 11/16/2024] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology represents a groundbreaking development in drug discovery, leveraging the ubiquitin‒proteasome system to specifically degrade proteins responsible for the disease. PROTAC is characterized by its unique heterobifunctional structure, which comprises two functional domains connected by a linker. The linker plays a pivotal role in determining PROTAC's biodegradative efficacy. Advanced and rationally designed functional linkers for PROTAC are under development. Nonetheless, the correlation between linker characteristics and PROTAC efficacy remains under-investigated. Consequently, this study will present a multidisciplinary analysis of PROTAC linkers and their impact on efficacy, thereby guiding the rational design of linkers. We will primarily discuss the structural types and characteristics of PROTAC linkers, and the optimization strategies used for their rational design. Furthermore, we will discuss how factors like linker length, group type, flexibility, and linkage site affect the biodegradation efficiency of PROTACs. We believe that this work will contribute towards the advancement of rational linker design in the PROTAC research area.
Collapse
Affiliation(s)
- Yawen Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Zhangyan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yonggui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Lingling Song
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macau Polytechnic University, Macau 999078, China
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439, USA
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Whittaker MK, Bendzunas GN, Shirani M, LeClair TJ, Shebl B, Dill TC, Coffino P, Simon SM, Kennedy EJ. Targeted Degradation of Protein Kinase A via a Stapled Peptide PROTAC. ACS Chem Biol 2024; 19:1888-1895. [PMID: 39137166 PMCID: PMC11420944 DOI: 10.1021/acschembio.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are bifunctional molecules that bind and recruit an E3 ubiquitin ligase to a targeted protein of interest, often through the utilization of a small molecule inhibitor. To expand the possible range of kinase targets that can be degraded by PROTACs, we sought to develop a PROTAC utilizing a hydrocarbon-stapled peptide as the targeting agent to bind the surface of a target protein of interest. In this study, we describe the development of a proteolysis-targeting chimera, dubbed Stapled Inhibitor Peptide - PROTAC or StIP-TAC, linking a hydrocarbon-stapled peptide with an E3 ligase ligand for targeted degradation of Protein Kinase A (PKA). This StIP-TAC molecule stimulated E3-mediated protein degradation of PKA, and this effect could be reversed by the addition of the proteasomal inhibitor MG-132. Further, StIP-TAC treatment led to a significant reduction in PKA substrate phosphorylation. Since many protein targets of interest lack structural features that make them amenable to small molecule targeting, development of StIP-TACs may broaden the potential range of protein targets using a PROTAC-mediated proteasomal degradation approach.
Collapse
Affiliation(s)
- Matthew K Whittaker
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - George N Bendzunas
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Timothy J LeClair
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Taylor C Dill
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Wang H, Chen M, Zhang X, Xie S, Qin J, Li J. Peptide-based PROTACs: Current Challenges and Future Perspectives. Curr Med Chem 2024; 31:208-222. [PMID: 36718000 DOI: 10.2174/0929867330666230130121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 02/01/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are an attractive means to target previously undruggable or drug-resistant mutant proteins. While small molecule-based PROTACs are stable and can cross cell membranes, there is limited availability of suitable small molecule warheads capable of recruiting proteins to an E3 ubiquitin ligase for degradation. With advances in structural biology and in silico protein structure prediction, it is now becoming easier to define highly selective peptides suitable for PROTAC design. As a result, peptide-based PROTACs are becoming a feasible proposition for targeting previously "undruggable" proteins not amenable to small molecule inhibition. In this review, we summarize recent progress in the design and application of peptide-based PROTACs as well as several practical approaches for obtaining candidate peptides for PROTACs. We also discuss the major hurdles preventing the translation of peptide-based PROTACs from bench to bedside, such as their delivery and bioavailability, with the aim of stimulating discussion about how best to accelerate the clinical development of peptide- based PROTACs in the near future.
Collapse
Affiliation(s)
- Huidan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Miao Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiaoyuan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Songbo Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Jingrui Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
4
|
Shen F, Dassama LMK. Opportunities and challenges of protein-based targeted protein degradation. Chem Sci 2023; 14:8433-8447. [PMID: 37592990 PMCID: PMC10430753 DOI: 10.1039/d3sc02361c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 08/19/2023] Open
Abstract
In the 20 years since the first report of a proteolysis targeting chimeric (PROTAC) molecule, targeted protein degradation (TPD) technologies have attempted to revolutionize the fields of chemical biology and biomedicine by providing exciting research opportunities and potential therapeutics. However, they primarily focus on the use of small molecules to recruit the ubiquitin proteasome system to mediate target protein degradation. This then limits protein targets to cytosolic domains with accessible and suitable small molecule binding pockets. In recent years, biologics such as proteins and nucleic acids have instead been used as binders for targeting proteins, thereby expanding the scope of TPD platforms to include secreted proteins, transmembrane proteins, and soluble but highly disordered intracellular proteins. This perspective summarizes the recent TPD platforms that utilize nanobodies, antibodies, and other proteins as binding moieties to deplete challenging targets, either through the ubiquitin proteasome system or the lysosomal degradation pathway. Importantly, the perspective also highlights opportunities and remaining challenges of current protein-based TPD technologies.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
| | - Laura M K Dassama
- Department of Chemistry, Sarafan ChEM-H Institute, Stanford University USA
- Department of Microbiology & Immunology, Stanford School of Medicine USA
| |
Collapse
|
5
|
Wang H, Zhou R, Xu F, Yang K, Zheng L, Zhao P, Shi G, Dai L, Xu C, Yu L, Li Z, Wang J, Wang J. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Biomater Res 2023; 27:72. [PMID: 37480049 PMCID: PMC10362593 DOI: 10.1186/s40824-023-00385-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/21/2023] [Indexed: 07/23/2023] Open
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential to modulate disease-associated proteins that have previously been considered undruggable, by employing the host destruction machinery. The exploration and discovery of cellular degradation pathways, including but not limited to proteasomes and lysosome pathways as well as their degraders, is an area of active research. Since the concept of proteolysis-targeting chimeras (PROTACs) was introduced in 2001, the paradigm of TPD has been greatly expanded and moved from academia to industry for clinical translation, with small-molecule TPD being particularly represented. As an indispensable part of TPD, biological TPD (bioTPD) technologies including peptide-, fusion protein-, antibody-, nucleic acid-based bioTPD and others have also emerged and undergone significant advancement in recent years, demonstrating unique and promising activities beyond those of conventional small-molecule TPD. In this review, we provide an overview of recent advances in bioTPD technologies, summarize their compositional features and potential applications, and briefly discuss their drawbacks. Moreover, we present some strategies to improve the delivery efficacy of bioTPD, addressing their challenges in further clinical development.
Collapse
Affiliation(s)
- Huifang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Runhua Zhou
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fushan Xu
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Kongjun Yang
- The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Liuhai Zheng
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Pan Zhao
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Guangwei Shi
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Le Yu
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Zhijie Li
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jianhong Wang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Centre for Respirology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, P. R. China.
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| |
Collapse
|
6
|
Primavera E, Palazzotti D, Barreca ML, Astolfi A. Computer-Aided Identification of Kinase-Targeted Small Molecules for Cancer: A Review on AKT Protein. Pharmaceuticals (Basel) 2023; 16:993. [PMID: 37513905 PMCID: PMC10384952 DOI: 10.3390/ph16070993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
AKT (also known as PKB) is a serine/threonine kinase that plays a pivotal regulatory role in the PI3K/AKT/mTOR signaling pathway. Dysregulation of AKT activity, especially its hyperactivation, is closely associated with the development of various human cancers and resistance to chemotherapy. Over the years, a wide array of AKT inhibitors has been discovered through experimental and computational approaches. In this regard, herein we present a comprehensive overview of AKT inhibitors identified using computer-assisted drug design methodologies (including docking-based and pharmacophore-based virtual screening, machine learning, and quantitative structure-activity relationships) and successfully validated small molecules endowed with anticancer activity. Thus, this review provides valuable insights to support scientists focused on AKT inhibition for cancer treatment and suggests untapped directions for future computer-aided drug discovery efforts.
Collapse
Affiliation(s)
- Erika Primavera
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| | - Deborah Palazzotti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
7
|
Nag A, Mafi A, Das S, Yu MB, Alvarez-Villalonga B, Kim SK, Su Y, Goddard WA, Heath JR. Stereochemical engineering yields a multifunctional peptide macrocycle inhibitor of Akt2 by fine-tuning macrocycle-cell membrane interactions. Commun Chem 2023; 6:95. [PMID: 37202473 DOI: 10.1038/s42004-023-00890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Macrocycle peptides are promising constructs for imaging and inhibiting extracellular, and cell membrane proteins, but their use for targeting intracellular proteins is typically limited by poor cell penetration. We report the development of a cell-penetrant high-affinity peptide ligand targeted to the phosphorylated Ser474 epitope of the (active) Akt2 kinase. This peptide can function as an allosteric inhibitor, an immunoprecipitation reagent, and a live cell immunohistochemical staining reagent. Two cell penetrant stereoisomers were prepared and shown to exhibit similar target binding affinities and hydrophobic character but 2-3-fold different rates of cell penetration. Experimental and computational studies resolved that the ligands' difference in cell penetration could be assigned to their differential interactions with cholesterol in the membrane. These results expand the tool kit for designing new chiral-based cell-penetrant ligands.
Collapse
Affiliation(s)
- Arundhati Nag
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Samir Das
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Mary Beth Yu
- California Institute of Technology, Pasadena, CA, USA
| | | | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Yapeng Su
- California Institute of Technology, Pasadena, CA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - James R Heath
- California Institute of Technology, Pasadena, CA, USA.
- Institute for Systems Biology, Seattle, WA, USA.
| |
Collapse
|
8
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Chatterjee DR, Kapoor S, Jain M, Das R, Chowdhury MG, Shard A. PROTACting the kinome with covalent warheads. Drug Discov Today 2023; 28:103417. [PMID: 36306996 DOI: 10.1016/j.drudis.2022.103417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 02/02/2023]
Abstract
The dawn of targeted degradation using proteolysis-targeting chimeras (PROTACs) against recalcitrant proteins has prompted numerous efforts to develop complementary drugs. Although many of these are specifically directed against undruggable proteins, there is increasing interest in small molecule-based PROTACs that target intracellular pathways, and some have recently entered clinical trials. Concurrently, small molecule-based PROTACs that target protumorigenic pathways in cancer cells, the tumor microenvironment (TME), and angiogenesis have been found to have potent effects that synergize with the action of antibodies. This has led to the augmentation of PROTACs with variable substitution patterns. Several combinations with small molecules targeting undruggable proteins are now under clinical investigation. In this review, we discuss the recent milestones achieved as well as challenges encountered in this area of drug development, as well as our opinion on the best path forward.
Collapse
Affiliation(s)
- Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Meenakshi Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
10
|
Liu Z, Hu M, Yang Y, Du C, Zhou H, Liu C, Chen Y, Fan L, Ma H, Gong Y, Xie Y. An overview of PROTACs: a promising drug discovery paradigm. MOLECULAR BIOMEDICINE 2022; 3:46. [PMID: 36536188 PMCID: PMC9763089 DOI: 10.1186/s43556-022-00112-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) technology has emerged as a novel therapeutic paradigm in recent years. PROTACs are heterobifunctional molecules that degrade target proteins by hijacking the ubiquitin-proteasome system. Currently, about 20-25% of all protein targets are being studied, and most works focus on their enzymatic functions. Unlike small molecules, PROTACs inhibit the whole biological function of the target protein by binding to the target protein and inducing subsequent proteasomal degradation. PROTACs compensate for limitations that transcription factors, nuclear proteins, and other scaffolding proteins are difficult to handle with traditional small-molecule inhibitors. Currently, PROTACs have successfully degraded diverse proteins, such as BTK, BRD4, AR, ER, STAT3, IRAK4, tau, etc. And ARV-110 and ARV-471 exhibited excellent efficacy in clinical II trials. However, what targets are appropriate for PROTAC technology to achieve better benefits than small-molecule inhibitors are not fully understood. And how to rationally design an efficient PROTACs and optimize it to be orally effective poses big challenges for researchers. In this review, we summarize the features of PROTAC technology, analyze the detail of general principles for designing efficient PROTACs, and discuss the typical application of PROTACs targeting different protein categories. In addition, we also introduce the progress of relevant clinical trial results of representative PROTACs and assess the challenges and limitations that PROTACs may face. Collectively, our studies provide references for further application of PROTACs.
Collapse
Affiliation(s)
- Zi Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Mingxing Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yu Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chenghao Du
- grid.42505.360000 0001 2156 6853Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles, 90089 USA
| | - Haoxuan Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Chengyali Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Yuanwei Chen
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Lei Fan
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Hongqun Ma
- Hinova Pharmaceuticals Inc., Chengdu, 610041 China
| | - Youling Gong
- grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yongmei Xie
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, Department of Laboratory Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| |
Collapse
|
11
|
Zhu CL, Luo X, Tian T, Rao Z, Wang H, Zhou Z, Mi T, Chen D, Xu Y, Wu Y, Che J, Zhou Y, Li J, Dong X. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader. Eur J Med Chem 2022; 238:114459. [DOI: 10.1016/j.ejmech.2022.114459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
|
12
|
Sasso J, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2022; 62:601-623. [PMID: 35856839 PMCID: PMC9910052 DOI: 10.1021/acs.biochem.2c00245] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation is a rapidly exploding drug discovery strategy that uses small molecules to recruit disease-causing proteins for rapid destruction mainly via the ubiquitin-proteasome pathway. It shows great potential for treating diseases such as cancer and infectious, inflammatory, and neurodegenerative diseases, especially for those with "undruggable" pathogenic protein targets. With the recent rise of the "molecular glue" type of protein degraders, which tighten and simplify the connection of an E3 ligase with a disease-causing protein for ubiquitination and subsequent degradation, new therapies for unmet medical needs are being designed and developed. Here we use data from the CAS Content Collection and the publication landscape of recent research on targeted protein degraders to provide insights into these molecules, with a special focus on molecular glues. We also outline the advantages of the molecular glues and summarize the advances in drug discovery practices for molecular glue degraders. We further provide a thorough review of drug candidates in targeted protein degradation through E3 ligase recruitment. Finally, we highlight the progression of molecular glues in drug discovery pipelines and their targeted diseases. Overall, our paper provides a comprehensive reference to support the future development of molecular glues in medicine.
Collapse
|
13
|
Ma S, Ji J, Tong Y, Zhu Y, Dou J, Zhang X, Xu S, Zhu T, Xu X, You Q, Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharm Sin B 2022; 12:2990-3005. [PMID: 35865099 PMCID: PMC9293674 DOI: 10.1016/j.apsb.2022.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
The proteolysis targeting chimeras (PROTACs) technology has been rapidly developed since its birth in 2001, attracting rapidly growing attention of scientific institutes and pharmaceutical companies. At present, a variety of small molecule PROTACs have entered the clinical trial. However, as small molecule PROTACs flourish, non-small molecule PROTACs (NSM-PROTACs) such as peptide PROTACs, nucleic acid PROTACs and antibody PROTACs have also advanced considerably over recent years, exhibiting the unique characters beyond the small molecule PROTACs. Here, we briefly introduce the types of NSM-PROTACs, describe the advantages of NSM-PROTACs, and summarize the development of NSM-PROTACs so far in detail. We hope this article could not only provide useful insights into NSM-PROTACs, but also expand the research interest of NSM-PROTACs.
Collapse
Affiliation(s)
- Sinan Ma
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Jianai Ji
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Junwei Dou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Tianbao Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
15
|
Protein Catalyzed Capture (PCC) Agents for Antigen Targeting. Methods Mol Biol 2021. [PMID: 34596849 DOI: 10.1007/978-1-0716-1689-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The protein catalyzed capture agent (PCC) method is a powerful combinatorial screening strategy for discovering synthetic macrocyclic peptide ligands, called PCCs, to designated protein epitopes. The foundational concept of the PCC method is the use of in situ click chemistry to survey large combinatorial libraries of peptides for ligands to designated biological targets. State-of-the-art PCC screens integrate synthetic libraries of constrained macrocyclic peptides with epitope-specific targeting strategies to identify high-affinity (<100 nM) binders de novo. Automated instrumentation can accelerate PCC discovery to a rapid 2-week timeframe. Here, we describe methods to perform combinatorial screens that yield epitope-targeted PCCs.
Collapse
|
16
|
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov 2021; 20:551-569. [PMID: 34002056 PMCID: PMC8127496 DOI: 10.1038/s41573-021-00195-4] [Citation(s) in RCA: 501] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non-cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | | | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
17
|
Yan G, Zhong X, Yue L, Pu C, Shan H, Lan S, Zhou M, Hou X, Yang J, Li R. Discovery of a PROTAC targeting ALK with in vivo activity. Eur J Med Chem 2021; 212:113150. [PMID: 33453602 DOI: 10.1016/j.ejmech.2020.113150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Anaplastic lymphoma kinase (ALK) was involved in the development of various cancer types. Although several ALK inhibitors have been advanced to clinical trials, the emergence of drug resistance has limited the clinical application of them. To overcome the drug resistance, proteolysis targeting chimeras (PROTACs) could be an alternative strategy. In this study, a series of ALK degraders were designed and synthesized. The degraders were developed through the conjugation of LDK378 and CRBN E3 ubiquitin ligase ligands. Among all the molecules, compound B3 showed potent selective inhibitory activity to ALK and can decrease the cellular levels of ALK fusion proteins in a concentration- and time-dependent manner in H3122 cell line. Meanwhile, B3 showed improved anticancer activity in vitro comparing with LDK378 and the antiproliferative activity to xenograft tumor model was acceptable. All the results demonstrated that ALK degrader B3 with in vitro and in vivo anti-cancer activities was valuable for further investigation.
Collapse
Affiliation(s)
- Guoyi Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China; Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University, Zhengzhou, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Yue
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Suke Lan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xueyan Hou
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Molecules 2020; 25:molecules25245956. [PMID: 33339292 PMCID: PMC7766482 DOI: 10.3390/molecules25245956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The induction of protein degradation in a highly selective and efficient way by means of druggable molecules is known as targeted protein degradation (TPD). TPD emerged in the literature as a revolutionary idea: a heterobifunctional chimera with the capacity of creating an interaction between a protein of interest (POI) and a E3 ubiquitin ligase will induce a process of events in the POI, including ubiquitination, targeting to the proteasome, proteolysis and functional silencing, acting as a sort of degradative knockdown. With this programmed protein degradation, toxic and disease-causing proteins could be depleted from cells with potentially effective low drug doses. The proof-of-principle validation of this hypothesis in many studies has made the TPD strategy become a new attractive paradigm for the development of therapies for the treatment of multiple unmet diseases. Indeed, since the initial protacs (Proteolysis targeting chimeras) were posited in the 2000s, the TPD field has expanded extraordinarily, developing innovative chemistry and exploiting multiple degradation approaches. In this article, we review the breakthroughs and recent novel concepts in this highly active discipline.
Collapse
|
19
|
Jin J, Wu Y, Chen J, Shen Y, Zhang L, Zhang H, Chen L, Yuan H, Chen H, Zhang W, Luan X. The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics 2020; 10:10141-10153. [PMID: 32929339 PMCID: PMC7481416 DOI: 10.7150/thno.46985] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite dramatic advances in drug discovery over the decades, effective therapeutic strategies for cancers treatment are still in urgent demands. PROteolysis TArgeting Chimera (PROTAC), a novel therapeutic modality, has been vigorously promoted in preclinical and clinical applications. Unlike small molecule PROTAC, peptide PROTAC (p-PROTAC) with advantages of high specificity and low toxicity, while avoiding the limitations of shallow binding pockets through large interacting surfaces, provides promising substitutions for E3 ubiquitin ligase complex-mediated ubiquitination of "undruggable proteins". It is worth noting that successful applications of p-PROTAC still have some obstacles, including low stability and poor membrane permeability. Hence, we highlight that p-PROTAC combined with cell-penetrating peptides, constrained conformation technique, and targeted delivery systems could be the future efforts for potential translational research.
Collapse
Affiliation(s)
- Jinmei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinjiao Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiwen Shen
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 US
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:317-347. [DOI: 10.1007/978-981-15-1025-0_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Inducing the Degradation of Disease-Related Proteins Using Heterobifunctional Molecules. Molecules 2019; 24:molecules24183272. [PMID: 31500395 PMCID: PMC6766870 DOI: 10.3390/molecules24183272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/02/2023] Open
Abstract
Current drug development strategies that target either enzymatic or receptor proteins for which specific small molecule ligands can be designed for modulation, result in a large portion of the proteome being overlooked as undruggable. The recruitment of natural degradation cascades for targeted protein removal using heterobifunctional molecules (or degraders) provides a likely avenue to expand the druggable proteome. In this review, we discuss the use of this drug development strategy in relation to degradation cascade-recruiting mechanisms and successfully targeted disease-related proteins. Essential characteristics to be considered in degrader design are deliberated upon and future development challenges mentioned.
Collapse
|
22
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
23
|
Pettersson M, Crews CM. PROteolysis TArgeting Chimeras (PROTACs) - Past, present and future. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:15-27. [PMID: 31200855 DOI: 10.1016/j.ddtec.2019.01.002] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/03/2023]
Abstract
The majority of currently used therapeutics are small molecule-based and utilize occupancy-driven pharmacology as the mode of action (MOA), in which the protein function is modulated via temporary inhibition. New modalities that operate using alternative MOAs are essential for tapping into the "undruggable" proteome. The PROteolysis Targeting Chimera (PROTAC) technology provides an attractive new approach that utilizes an event-driven MOA. Small molecule-based heterobifunctional PROTACs modulate protein target levels by hijacking the ubiquitin-proteasome system to induce degradation of the target. Here, we address important milestones in the development of the PROTAC technology, as well as emphasize key findings from this previous year and highlight future directions of this promising drug discovery modality.
Collapse
Affiliation(s)
- Mariell Pettersson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Krajcovicova S, Jorda R, Hendrychova D, Krystof V, Soural M. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC). Chem Commun (Camb) 2019; 55:929-932. [PMID: 30601480 DOI: 10.1039/c8cc08716d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A preloaded resin consisting of a thalidomide moiety and an ethylene-oxy linker allows the simple and fast formation of PROTACs. The feasibility of the procedure was illustrated by conjugating different protein kinase inhibitors. The biological functionality of an ibrutinib-like conjugate was then confirmed by a cellular experiment.
Collapse
Affiliation(s)
- S Krajcovicova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem Funct 2019; 37:21-30. [PMID: 30604499 PMCID: PMC6590639 DOI: 10.1002/cbf.3369] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022]
Abstract
Currently, a new technology termed PROTAC, proteolysis targeting chimera, has been developed for inducing the protein degradation by a targeting molecule. This technology takes advantage of a moiety of targeted protein and a moiety of recognizing E3 ubiquitin ligase and produces a hybrid molecule to specifically knock down a targeted protein. During the first decade, three pedigreed groups worked on the development of this technology. To date, this technology has been extended by different groups, aiming to develop new drugs against different diseases including cancers. This review summarizes the contributions of the groups for the development of PROTAC. SIGNIFICANCE OF THE STUDY: This review summarized the development of the PROTAC technology for readers and also presented the author's opinions on the application of the technology in tumor therapy.
Collapse
Affiliation(s)
- Yutian Zou
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China.,Department of Science, Brookwood High School, Snellville, Georgia
| | - Danhui Ma
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Yinyin Wang
- The State Laboratory of Membrane Biology, Department of Basic Medicine, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Moon S, Lee BH. Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets. Mol Cells 2018; 41:933-942. [PMID: 30486612 PMCID: PMC6277563 DOI: 10.14348/molcells.2018.0372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.
Collapse
|
28
|
Affiliation(s)
- Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 26 Qiuyue Rd, Pudong, Shanghai 201210 China
| | - Nathanael S. Gray
- Department of Cancer Biology; Dana-Farber Cancer Institute; Boston MA 02215 USA
- Department of Biochemistry and Molecular Pharmacology; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
29
|
Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. CHEM REC 2018; 18:1681-1700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| |
Collapse
|
30
|
Abstract
Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.
Collapse
|
31
|
Shimokawa K, Shibata N, Sameshima T, Miyamoto N, Ujikawa O, Nara H, Ohoka N, Hattori T, Cho N, Naito M. Targeting the Allosteric Site of Oncoprotein BCR-ABL as an Alternative Strategy for Effective Target Protein Degradation. ACS Med Chem Lett 2017; 8:1042-1047. [PMID: 29057048 DOI: 10.1021/acsmedchemlett.7b00247] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022] Open
Abstract
Protein degradation technology based on hybrid small molecules is an emerging drug modality that has significant potential in drug discovery and as a unique method of post-translational protein knockdown in the field of chemical biology. Here, we report the first example of a novel and potent protein degradation inducer that binds to an allosteric site of the oncogenic BCR-ABL protein. BCR-ABL allosteric ligands were incorporated into the SNIPER (Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers) platform, and a series of in vitro biological assays of binding affinity, target protein modulation, signal transduction, and growth inhibition were carried out. One of the designed compounds, 6 (SNIPER(ABL)-062), showed desirable binding affinities against ABL1, cIAP1/2, and XIAP and consequently caused potent BCR-ABL degradation.
Collapse
Affiliation(s)
- Kenichiro Shimokawa
- Pharmaceutical
Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Norihito Shibata
- Divisions
of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Tomoya Sameshima
- Pharmaceutical
Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Naoki Miyamoto
- Pharmaceutical
Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Osamu Ujikawa
- Pharmaceutical
Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Hiroshi Nara
- Pharmaceutical
Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Nobumichi Ohoka
- Divisions
of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Takayuki Hattori
- Divisions
of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Nobuo Cho
- Pharmaceutical
Research Division, Takeda Pharmaceutical Co. Ltd., Kanagawa, Japan
| | - Mikihiko Naito
- Divisions
of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
32
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
33
|
Abstract
Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can hamper compound efficacy. Nucleic acid-based strategies that control protein function by affecting expression have emerged as an alternative. However, metabolic stability and broad bioavailability represent development hurdles that remain to be overcome for these approaches. More recently, utilizing the cell's own protein destruction machinery for selective degradation of essential drivers of human disorders has opened up a new and exciting area of drug discovery. Small-molecule-induced proteolysis of selected substrates offers the potential of reaching beyond the limitations of the current pharmaceutical paradigm to expand the druggable target space.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
34
|
Ottis P, Crews CM. Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. ACS Chem Biol 2017; 12:892-898. [PMID: 28263557 DOI: 10.1021/acschembio.6b01068] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Until recently, the only ways to reduce specific protein signaling were to either knock down the target by RNAi or to interfere with the signaling by inhibiting an enzyme or receptor within the signal transduction cascade. Herein, we review an emerging class of small molecule pharmacological agents, called PROTACs, that present a novel approach to specifically target proteins and their respective signaling pathways. These heterobifunctional molecules utilize endogenous cellular quality control machinery by recruiting it to target proteins in order to induce their degradation.
Collapse
Affiliation(s)
- Philipp Ottis
- Department
of Molecular, Cellular and Developmental Biology, ‡Department of Chemistry, and §Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Department
of Molecular, Cellular and Developmental Biology, ‡Department of Chemistry, and §Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
35
|
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Collapse
Affiliation(s)
| | - Craig M. Crews
- Departments of Molecular, Cellular & Developmental Biology; Chemistry; Pharmacology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|