1
|
Díaz-Gómez JL, Martín-Estal I, Rivera-Aboytes E, Gaxiola-Muñíz RA, Puente-Garza CA, García-Lara S, Castorena-Torres F. Biomedical applications of synthetic peptides derived from venom of animal origin: A systematic review. Biomed Pharmacother 2024; 170:116015. [PMID: 38113629 DOI: 10.1016/j.biopha.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Development of therapeutic agents that have fewer adverse effects and have higher efficacy for diseases, such as cancer, metabolic disorders, neurological diseases, infections, cardiovascular diseases, and respiratory diseases, are required. Recent studies have focused on identifying novel sources for pharmaceutical molecules to develop therapies against these diseases. Among the sources for potentially new therapies, animal venom-derived molecules have generated much interest. Various animal venom-derived proteins and peptides have been isolated, identified, synthesized, and tested to develop drugs. Venom-derived peptides have several biomedical properties, such as proapoptotic, cell migration, and autophagy regulation activities in cancer cell models; induction of vasodilation by nitric oxide and regulation of angiotensin II; modification of insulin response by controlling calcium and potassium channels; regulation of pain receptor activity; modulation of immune cell activity; alteration of motor neuron activity; degradation or inhibition of β-amyloid plaque formation; antibacterial, antifungal, antiviral, and antiprotozoal activities; increase in sperm motility and potentiation of erectile function; reduction of intraocular pressure; anticoagulation, fibrinolytic, and antithrombotic activities; etc. This systematic review compiles these biomedical properties and potential biomedical applications of synthesized animal venom-derived peptides reported in the latest research. In addition, the limitations and areas of opportunity in this research field are discussed so that new studies can be developed based on the data presented.
Collapse
Affiliation(s)
- Jorge L Díaz-Gómez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - Elizabeth Rivera-Aboytes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Ramón Alonso Gaxiola-Muñíz
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico
| | - César A Puente-Garza
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Silverio García-Lara
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Fabiola Castorena-Torres
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, N.L., Mexico.
| |
Collapse
|
2
|
Chittratan P, Chalitangkoon J, Wongsariya K, Mathaweesansurn A, Detsri E, Monvisade P. New Chitosan-Grafted Thymol Coated on Gold Nanoparticles for Control of Cariogenic Bacteria in the Oral Cavity. ACS OMEGA 2022; 7:26582-26590. [PMID: 35936441 PMCID: PMC9352254 DOI: 10.1021/acsomega.2c02776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chitosan-grafted thymol (CST) coated on gold nanoparticles has been synthesized and characterized for the design of antimicrobial materials. CST was synthesized via adapting the Mannich reaction, and it acted as the capping agent for the synthesis of gold nanoparticles (AuNPs). The grafting of thymol onto the side chain of chitosan has provided a degree of substitution value (%DSNMR) of 10.0%, calculated by nuclear magnetic resonance spectroscopy. UV-visible spectrometry and elemental analysis were used to confirm the successful synthesis of CST through adapting the Mannich reaction. The appropriate concentration of CST for AuNP synthesis was found to be 0.020%w/v. A red-wine colloidal AuNP solution of 2.41-3.30 nM particle size exhibits a strong surface plasmon resonance at 502 nm, which shows negative charges at pH = 9 of -36.37 mV. This result evidenced that the AuNPs showed electrostatic repulsion and CST played a role as a capping agent to provide a good dispersion and stability state. CST coated on the AuNP surface was successfully utilized for the control of cariogenic bacteria in the oral cavity. The results obtained from this study show that the tuning of the capping agent used in the synthesis step strongly influences the latter antimicrobial activity of the nanoparticles against Streptococcus mutans ATCC 25175 and Streptococcus sobrinus ATCC 33402 activity, with an inhibition zone of 15.90 and 14.25 mm, respectively. The average minimum inhibitory concentration values against S. mutans ATCC 25175 and S. sobrinus ATCC 33402 were found to be 25 and 100 mg/L, respectively, whereas the minimum bactericidal concentration values were 100 and 200 mg/L, respectively.
Collapse
Affiliation(s)
- Pakawat Chittratan
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Polymer
Synthesis and Functional Materials Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jongjit Chalitangkoon
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Polymer
Synthesis and Functional Materials Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Karn Wongsariya
- Department
of Biology School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Arjnarong Mathaweesansurn
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Applied
Analytical Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Ekarat Detsri
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Pathavuth Monvisade
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Polymer
Synthesis and Functional Materials Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
3
|
Roque-Borda CA, Gualque MWDL, da Fonseca FH, Pavan FR, Santos-Filho NA. Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics 2022; 14:891. [PMID: 35631477 PMCID: PMC9146920 DOI: 10.3390/pharmaceutics14050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Some diseases of uncontrolled proliferation such as cancer, as well as infectious diseases, are the main cause of death in the world, and their causative agents have rapidly developed resistance to the various existing treatments, making them even more dangerous. Thereby, the discovery of new therapeutic agents is a challenge promoted by the World Health Organization (WHO). Biomacromolecules, isolated or synthesized from a natural template, have therapeutic properties which have not yet been fully studied, and represent an unexplored potential in the search for new drugs. These substances, starting from conglomerates of proteins and other substances such as animal venoms, or from minor substances such as bioactive peptides, help fight diseases or counteract harmful effects. The high effectiveness of these biomacromolecules makes them promising substances for obtaining new drugs; however, their low bioavailability or stability in biological systems is a challenge to be overcome in the coming years with the help of nanotechnology. The objective of this review article is to describe the relationship between the structure and function of biomacromolecules of animal origin that have applications already described using nanotechnology and targeted delivery.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Marcos William de Lima Gualque
- Proteomics Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fauller Henrique da Fonseca
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
4
|
Kesharwani K, Singh R, Khan MJ, Vinayak V, Joshi KB. Hydrophobized Short Peptide Amphiphile Functionalized Gold Nanoparticles as Antibacterial Biomaterials. ChemistrySelect 2021. [DOI: 10.1002/slct.202102204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushboo Kesharwani
- Department of Chemistry School of Chemical Science and Technology Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Ramesh Singh
- Department of Chemistry School of Chemical Science and Technology Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and metabolism lab (DNM) School of Applied Sciences Department of Criminology and Forensic Science Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP
| | - Vandana Vinayak
- Diatom Nanoengineering and metabolism lab (DNM) School of Applied Sciences Department of Criminology and Forensic Science Dr. Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP
| | - Khashti Ballabh Joshi
- Department of Chemistry School of Chemical Science and Technology Dr.Harisingh Gour Vishwavidyalaya (A Central University) Sagar MP 470003 India
| |
Collapse
|
5
|
Zedan AMG, Sakran MI, Bahattab O, Hawsawi YM, Al-Amer O, Oyouni AAA, Nasr Eldeen SK, El-Magd MA. Oriental Hornet ( Vespa orientalis) Larval Extracts Induce Antiproliferative, Antioxidant, Anti-Inflammatory, and Anti-Migratory Effects on MCF7 Cells. Molecules 2021; 26:3303. [PMID: 34072744 PMCID: PMC8198668 DOI: 10.3390/molecules26113303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
The use of insects as a feasible and useful natural product resource is a novel and promising option in alternative medicine. Several components from insects and their larvae have been found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and investigate the underlying mechanisms. Our results showed that individual treatment with 5% aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer drugs and as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Amina M. G. Zedan
- Biological and Environmental Sciences Department, Home Economic Faculty, Al Azhar University, Tanta 31732, Egypt;
| | - Mohamed I. Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31512, Egypt
| | - Omar Bahattab
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC J04, Jeddah 21499, Saudi Arabia;
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Atif A. A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Mohammed A. El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
6
|
Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021; 13:toxins13030206. [PMID: 33809401 PMCID: PMC8000949 DOI: 10.3390/toxins13030206] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
Collapse
|
7
|
Souza F, Fornasier F, Carvalho A, Silva B, Lima M, Pimentel A. Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111382. [PMID: 33254989 DOI: 10.1016/j.msec.2020.111382] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/01/2023]
Abstract
In spite of antibiotics, antibacterial agents or specifically known as antiseptics are actively explored for the prevention of infection-associated medical devices. Antibacterial agents are introduced to overcome the complication of bacterial resistance which devoted by antibiotics. It can be classified into inorganic and organic, that prominently have impacted bacterial retardation in their own killing mechanism patterns. Therefore, this review paper aimed to provide information on most common used inorganic and organic antibacterial agents which have potential to be utilized in biomedical applications, thus, classifying the trends of antibacterial mechanism on Gram-negative and Gram-positive bacteria. In the beginning, infectious diseases and associated biomedical infections were stated to expose current infection scenarios on medical devices. The general view, application, susceptible bacteria and activation mechanism of inorganic (silver, copper, gold and zinc) and organic (chlorhexidine, triclosan, polyaniline and polyethylenimine) antibacterial agents that are widely proposed for biomedical area, were then gathered and reviewed. In the latter part of the study, the intact mechanisms of inorganic and organic antibacterial agents in retarding bacterial growth were classified and summarized based on its susceptibility on Gram-negative and Gram-positive bacteria. Most of inorganic antibacterial agents are in the form of metal, which release its ions to retard prominently Gram-negative bacteria. While organic antibacterial agents are susceptible to Gram-positive bacteria through organelle modification and disturbance of bio-chemical pathway. However, the antibacterial effects of each antibacterial agent are also depending on its effective mechanism and the species of bacterial strain. These compilation reviews and classification mechanisms are beneficial to assist the selection of antibacterial agents to be incorporated on/within biomaterials, based on its susceptible bacteria. Besides, the combination of several antibacterial agents with different susceptibilities will cover a wide range of antibacterial spectrum.
Collapse
Affiliation(s)
- Syafiqah Saidin
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; IJN-UTM Cardiovascular Engineering Centre, Institute for Human Centred Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Mohamad Amin Jumat
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Nur Ain Atiqah Mohd Amin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Abdullah Sharaf Saleh Al-Hammadi
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
9
|
Herrera C, Leza M, Martínez-López E. Diversity of compounds in Vespa spp. venom and the epidemiology of its sting: a global appraisal. Arch Toxicol 2020; 94:3609-3627. [PMID: 32700166 DOI: 10.1007/s00204-020-02859-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Poisonous animals imply a risk to human life, because their venom is a complex mixture of low molecular weight components, peptides and proteins. Hornets use the venom for self-defence, to repel intruders and to capture prey, but they can cause poisoning and allergic reactions to people. In particular, they seem to be a health problem in the countries where they are native due to their sting, which in the most severe cases can lead to severe or fatal systemic anaphylaxis. But this situation is being an emerging problem for new countries and continents because hornet incursions are increasing in the global change scenario, such as in Europe and America. Furthermore, 55 detailed cases of hornet sting were found in 27 papers during the current review where 36.4% died due to, mainly, a multi-organ failure, where renal failure and liver dysfunction were the most common complications. Moreover, the great taxonomic, ecological diversity, geographical distribution and the wide spectrum of pathophysiological symptoms of hornets have been the focus of new research. Considering this, the present systematic review summarizes the current knowledge about the components of Vespa venom and the epidemiology of its sting to serve as reference for the new research focused on the development of techniques for diagnosis, new drugs and treatments of its sting.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain.
| | - Emma Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain.,Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
10
|
Casciaro B, Ghirga F, Quaglio D, Mangoni ML. Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial Peptides. Curr Protein Pept Sci 2020; 21:429-438. [DOI: 10.2174/1389203720666191203101947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023]
Abstract
Cationic antimicrobial peptides (AMPs) are an interesting class of gene-encoded molecules
endowed with a broad-spectrum of anti-infective activity and immunomodulatory properties. They
represent promising candidates for the development of new antibiotics, mainly due to their membraneperturbing
mechanism of action that very rarely induces microbial resistance. However, bringing
AMPs into the clinical field is hampered by some intrinsic limitations, encompassing low peptide
bioavailability at the target site and high peptide susceptibility to proteolytic degradation. In this regard,
nanotechnologies represent an innovative strategy to circumvent these issues. According to the
literature, a large variety of nanoparticulate systems have been employed for drug-delivery, bioimaging,
biosensors or nanoantibiotics. The possibility of conjugating different types of molecules, including
AMPs, to these systems, allows the production of nanoformulations able to enhance the biological
profile of the compound while reducing its cytotoxicity and prolonging its residence time. In this minireview,
inorganic gold nanoparticles (NPs) and biodegradable polymeric NPs made of poly(lactide-coglycolide)
are described with particular emphasis on examples of the conjugation of AMPs to them, to
highlight the great potential of such nanoformulations as alternative antimicrobials.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Pranantyo D, Liu P, Zhong W, Kang ET, Chan-Park MB. Antimicrobial Peptide-Reduced Gold Nanoclusters with Charge-Reversal Moieties for Bacterial Targeting and Imaging. Biomacromolecules 2019; 20:2922-2933. [DOI: 10.1021/acs.biomac.9b00392] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Peng Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Wenbin Zhong
- Centre of Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585, Republic of Singapore
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| |
Collapse
|