1
|
Li YJ, Fang CB, Wang SS, Chen XQ, Li Y, Liu Q, Qi YK, Du SS. Design and synthesis of TH19P01-Camptothecin based hybrid peptides inducing effective anticancer responses on sortilin positive cancer cells. Bioorg Med Chem 2024; 111:117869. [PMID: 39126834 DOI: 10.1016/j.bmc.2024.117869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.
Collapse
Affiliation(s)
- Ya-Jie Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chang-Bo Fang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shu-Shu Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266555, China
| | - Xin-Qi Chen
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yantao Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
2
|
Song M, Liu Q, Yao JF, Wang YT, Ma YN, Xu H, Yu QY, Li Z, Du SS, Qi YK. Synthesis and structural optimization of oncolytic peptide LTX-315. Bioorg Med Chem 2024; 107:117760. [PMID: 38762978 DOI: 10.1016/j.bmc.2024.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing-Fang Yao
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Yu-Tao Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan-Nan Ma
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Huan Xu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian-Yao Yu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
3
|
Xu H, Fu XY, Bao YX, Zhu SY, Xu Z, Song M, Qi YK, Li Z, Du SS. d-type peptides based fluorescent probes for "turn on" sensing of heparin. Bioorg Chem 2024; 147:107356. [PMID: 38604021 DOI: 10.1016/j.bioorg.2024.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Developing "turn on" fluorescent probes was desirable for the detection of the effective anticoagulant agent heparin in clinical applications. Through combining the aggregation induced emission (AIE) fluorogen tetraphenylethene (TPE) and heparin specific binding peptide AG73, the promising "turn on" fluorescent probe TPE-1 has been developed. Nevertheless, although TPE-1 could achieve the sensitive and selective detection of heparin, the low proteolytic stability and undesirable poor solubility may limit its widespread applications. In this study, seven TPE-1 derived fluorescent probes were rationally designed, efficiently synthesized and evaluated. The stability and water solubility were systematically estimated. Especially, to achieve real-time monitoring of proteolytic stability, the novel Abz/Dnp-based "turn on" probes that employ the internally quenched fluorescent (IQF) mechanism were designed and synthesized. Moreover, the detection ability of synthetic fluorescent probes for heparin were systematically evaluated. Importantly, the performance of d-type peptide fluorescent probe XH-6 indicated that d-type amino acid substitutions could significantly improve the proteolytic stability without compromising its ability of heparin sensing, and attaching solubilizing tag 2-(2-aminoethoxy) ethoxy) acid (AEEA) could greatly enhance the solubility. Collectively, this study not only established practical strategies to improve both the water solubility and proteolytic stability of "turn on" fluorescent probes for heparin sensing, but also provided valuable references for the subsequent development of enzymatic hydrolysis-resistant d-type peptides based fluorescent probes.
Collapse
Affiliation(s)
- Huan Xu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Yong-Xin Bao
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266034, China
| | - Shu-Ya Zhu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zi Xu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China.
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Fu XY, Yin H, Chen XT, Yao JF, Ma YN, Song M, Xu H, Yu QY, Du SS, Qi YK, Wang KW. Three Rounds of Stability-Guided Optimization and Systematical Evaluation of Oncolytic Peptide LTX-315. J Med Chem 2024; 67:3885-3908. [PMID: 38278140 DOI: 10.1021/acs.jmedchem.3c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Xi-Tong Chen
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Jing-Fang Yao
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Yan-Nan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Min Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian-Yao Yu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Ke-Wei Wang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
5
|
Yin H, Fu XY, Gao HY, Ma YN, Yao JF, Du SS, Qi YK, Wang KW. Design, synthesis and anticancer evaluation of novel oncolytic peptide-chlorambucil conjugates. Bioorg Chem 2023; 138:106674. [PMID: 37331169 DOI: 10.1016/j.bioorg.2023.106674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.
Collapse
Affiliation(s)
- Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Han-Yu Gao
- School of Stomatology, Jining Medical University, #133 Hehua Road, Jining 272067, China
| | - Yan-Nan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Jing-Fang Yao
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China.
| | - Ke-Wei Wang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
6
|
Chi QN, Jia SX, Yin H, Wang LE, Fu XY, Ma YN, Sun MP, Qi YK, Li Z, Du SS. Efficient synthesis and anticancer evaluation of spider toxin peptide LVTX-8-based analogues with enhanced stability. Bioorg Chem 2023; 134:106451. [PMID: 36907048 DOI: 10.1016/j.bioorg.2023.106451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Cytotoxic peptides derived from spider venoms have been considered as promising candidates for anticancer treatment. The novel cell penetrating peptide LVTX-8, which is a 25-residue amphipathic α-helical peptide isolated from spider Lycosa vittata, exhibited potent cytotoxicity and is a potential precursor for further anticancer drug development. Nevertheless, LVTX-8 may be easily degraded by multiple proteases, inducing the proteolytic stability problem and short half-life. In this study, ten LVTX-8-based analogs were rationally designed and the efficient manual synthetic method was established by the DIC/Oxyma based condensation system. The cytotoxicity of synthetic peptides was systematically evaluated against seven cancer cell lines. Seven of the derived peptides exhibited high cytotoxicity towards tested cancer in vitro, which was better than or comparable to that of natural LVTX-8. In particular, both N-acetyl and C-hydrazide modified LVTX-8 (825) and the conjugate methotrexate (MTX)-GFLG-LVTX-8 (827) possessed more durable anticancer efficiency, higher proteolytic stability, as well as lower hemolysis. Finally, we confirmed that LVTX-8 could disrupt the integrity of cell membrane, target the mitochondria and reduce the mitochondrial membrane potential to induce the cell death. Taken together, the structural modifications were conducted on LVTX-8 for the first time and the stability significantly improved derivatives 825 and 827 may provide useful references for the modifications of cytotoxic peptides.
Collapse
Affiliation(s)
- Qiao-Na Chi
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi-Xi Jia
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Yin
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Li-E Wang
- Department of Assisted Reproduction, Reproductive Center, Qingdao Women and Children's Hospital, Qingdao 266004, China
| | - Xing-Yan Fu
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yan-Nan Ma
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Ming-Pu Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| |
Collapse
|
7
|
Yin H, Fu X, Gao H, Gao H, Ma Y, Chen X, Zhang X, Du SS, Qi YK. Hybrid peptide NTP-217 triggers ROS-mediated rapid necrosis in liver cancer cells by induction of mitochondrial leakage. Front Oncol 2023; 12:1028600. [PMID: 36713538 PMCID: PMC9881410 DOI: 10.3389/fonc.2022.1028600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Liver cancer is the third leading cause of cancer-associated mortality globally, and >830,000 patients with liver cancer undergoing treatment succumbed to the disease in 2020, which indicates the urgent need to develop a more effective anti-liver cancer drug. In our previous study, nucleus-targeting hybrid peptides obtained from the fusion of LTX-315 and the rhodamine B group possessed potent anti-adherent cancer cell activity. Hybrid peptides accumulated in the cell nucleus and damaged the nuclear membrane, resulting in the transfer of reactive oxygen species (ROS) from the cytoplasm to the nucleus and the induction of apoptosis. However, the source of the high concentration of ROS within the cytoplasm is unclear. Moreover, although our previous study demonstrated that hybrid peptides possessed potent anticancer activity against adherent cancer cells, their efficacy on liver cancer remained unexplored. The current study found that the hybrid peptide NTP-217 killed liver cancer cells after 4-h treatment with a half-maximal inhibitory concentration of 14.6-45.7 μM. NTP-217 could stably accumulate in the liver tumor tissue and markedly inhibited liver tumor growth in mice. Furthermore, NTP-217 destroyed mitochondria and induced the leakage of mitochondrial contents, resulting in the generation of a substantial quantity of ROS. Unlike the apoptosis induced by 24 h of treatment by NTP-217, 4 h of treatment caused ROS-mediated necrotic cell death. These findings suggested that short-time treatment with hybrid peptides could trigger ROS-mediated rapid necrosis in liver cancer cells, and provided a basis for the future development of hybrid peptides as anti-liver cancer agents.
Collapse
Affiliation(s)
- Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China,*Correspondence: Hao Yin, ; Shan-Shan Du, ; Yun-Kun Qi,
| | - Xingyan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Hanyu Gao
- School of Stomatology, Jining Medical University, Jining, China
| | - Han Gao
- Department of Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Yannan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Xitong Chen
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Xueqi Zhang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China,*Correspondence: Hao Yin, ; Shan-Shan Du, ; Yun-Kun Qi,
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China,*Correspondence: Hao Yin, ; Shan-Shan Du, ; Yun-Kun Qi,
| |
Collapse
|
8
|
Yin H, Chen XT, Chi QN, Ma YN, Fu XY, Du SS, Qi YK, Wang KW. The hybrid oncolytic peptide NTP-385 potently inhibits adherent cancer cells by targeting the nucleus. Acta Pharmacol Sin 2023; 44:201-210. [PMID: 35794372 PMCID: PMC9813345 DOI: 10.1038/s41401-022-00939-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 01/18/2023] Open
Abstract
The use of oncolytic peptides with activity against a wide range of cancer entities as a new and promising cancer therapeutic strategy has drawn increasing attention. The oncolytic peptide LTX-315 derived from bovine lactoferricin (LfcinB) was found to be highly effective against suspension cancer cells, but not adherent cancer cells. In this study, we tactically fused LTX-315 with rhodamine B through a hybridization strategy to design and synthesize a series of nucleus-targeting hybrid peptides and evaluated their activity against adherent cancer cells. Thus, four hybrid peptides, NTP-212, NTP-217, NTP-223 and NTP-385, were synthesized. These hybrid peptides enhanced the anticancer activity of LTX-315 in a panel of adherent cancer cell lines by 2.4- to 37.5-fold. In model mice bearing B16-F10 melanoma xenografts, injection of NTP-385 (0.5 mg per mouse for 3 consecutive days) induced almost complete regression of melanoma, prolonged the median survival time and increased the overall survival. Notably, the administered dose of NTP-385 was only half the effective dose of LTX-315. We further revealed that unlike LTX-315, which targets the mitochondria, NTP-385 disrupted the nuclear membrane and accumulated in the nucleus, resulting in the transfer of a substantial amount of reactive oxygen species (ROS) from the cytoplasm to the nucleus through the fragmented nuclear membrane. This ultimately led to DNA double-strand break (DSB)-mediated intrinsic apoptosis. In conclusion, this study demonstrates that hybrid peptides obtained from the fusion of LTX-315 and rhodamine B enhance anti-adherent cancer cell activity by targeting the nucleus and triggering DNA DSB-mediated intrinsic apoptosis. This study also provides an advantageous reference for nucleus-targeting peptide modification.
Collapse
Affiliation(s)
- Hao Yin
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao, 266073, China
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Xi-Tong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao, 266073, China
| | - Qiao-Na Chi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yan-Nan Ma
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao, 266073, China
| | - Xing-Yan Fu
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao, 266073, China
| | - Shan-Shan Du
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yun-Kun Qi
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao, 266073, China.
| | - Ke-Wei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao, 266073, China.
- Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
9
|
Qi YK, Tang X, Wei NN, Pang CJ, Du SS, Wang KW. Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. J Pept Sci 2022; 28:e3428. [PMID: 35610021 DOI: 10.1002/psc.3428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Discovering new antibiotics with novel chemical scaffolds and antibacterial mechanisms presents a challenge for medicinal scientists worldwide as the ever-increasing bacterial resistance poses a serious threat to human health. A new cyclic peptide-based antibiotic termed teixobactin was discovered from a screen of uncultured soil bacteria through iChip technology in 2015. Teixobactin exhibits excellent antibacterial activity against all the tested gram-positive pathogens and Mycobacterium tuberculosis, including drug-resistant strains. Given that teixobactin targets the highly conserved lipid II and lipid III, which induces the simultaneous inhibition of both peptidoglycan and teichoic acid synthesis, the emergence of resistance is considered to be rather difficult. The novel structure, potent antibacterial activity, and highly conservative targets make teixobactin a promising lead compound for further antibiotic development. This review provides a comprehensive treatise on the advances of teixobactin in the areas of discovery processes, antibacterial activity, mechanisms of action, chemical synthesis, and structural optimizations. The synthetic methods for the key building block l-allo-End, natural teixobactin, representative teixobactin analogues, as well as the structure-activity relationship studies will be highlighted and discussed in details. Finally, some insights into new trends for the generation of novel teixobactin analogues and tips for future work and directions will be commented.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China.,State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ning-Ning Wei
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Cheng-Jian Pang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ke Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Yin H, Chen X, Fu X, Ma Y, Xu Y, Zhang T, Liang S, Du S, Qi Y, Wang K. Efficient Chemical Synthesis and Oxidative Folding Studies of Scorpion Toxin Peptide WaTx. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|