1
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
2
|
Barragán-Cárdenas AC, Insuasty-Cepeda DS, Cárdenas-Martínez KJ, López-Meza J, Ochoa-Zarzosa A, Umaña-Pérez A, Rivera-Monroy ZJ, García-Castañeda JE. LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
3
|
Vitale I, Yamazaki T, Wennerberg E, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. Targeting Cancer Heterogeneity with Immune Responses Driven by Oncolytic Peptides. Trends Cancer 2021; 7:557-572. [PMID: 33446447 DOI: 10.1016/j.trecan.2020.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Accumulating preclinical and clinical evidence indicates that high degrees of heterogeneity among malignant cells constitute a considerable obstacle to the success of cancer therapy. This calls for the development of approaches that operate - or enable established treatments to operate - despite such intratumoral heterogeneity (ITH). In this context, oncolytic peptides stand out as promising therapeutic tools based on their ability to drive immunogenic cell death associated with robust anticancer immune responses independently of ITH. We review the main molecular and immunological pathways engaged by oncolytic peptides, and discuss potential approaches to combine these agents with modern immunotherapeutics in support of superior tumor-targeting immunity and efficacy in patients with cancer.
Collapse
Affiliation(s)
- Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-IRCCS, Candiolo, Italy
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway; Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
4
|
Whey protein in cancer therapy: A narrative review. Pharmacol Res 2019; 144:245-256. [PMID: 31005617 DOI: 10.1016/j.phrs.2019.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
Cancer remains a public health challenge in the identification and development of ideal pharmacological therapies and dietary strategies. The use of whey protein as a dietary strategy is widespread in the field of oncology. The two types of whey protein, sweet or acid, result from several processing techniques and possess distinct protein subfraction compositions. Mechanistically, whey protein subfractions have specific anti-cancer effects. Alpha-lactalbumin, human α-lactalbumin made lethal to tumor cell, bovine α-lactalbumin made lethal to tumor cell, bovine serum albumin, and lactoferrin are whey protein subfractions with potential to hinder tumor pathways. Such effects, however, are principally supported by studies performed in vitro and/or in vivo. In clinical practice, whey protein intake-induced anti-cancer effects are indiscernible. However, whey protein supplementation represents a practical, feasible, and cost-effective approach to mitigate cancer cachexia syndrome. The usefulness of whey protein is evidenced by a greater leucine content and the potential to modulate IGF-1 concentrations, representing important factors towards musculoskeletal hypertrophy. Further clinical trials are warranted and needed to establish the effects of whey protein supplementation as an adjuvant to cancer therapy.
Collapse
|
5
|
Hilchie AL, Hoskin DW, Power Coombs MR. Anticancer Activities of Natural and Synthetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:131-147. [DOI: 10.1007/978-981-13-3588-4_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
|
7
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. Future Med Chem 2017; 9:1339-1344. [DOI: 10.4155/fmc-2017-0088] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oncolytic peptide LTX-315, which has been de novo designed based on structure–activity relationship studies of host defense peptides, has the ability to kill human cancer cells and induce specific anticancer immune response when injected locally into tumors established in immunocompetent mice. The oncolytic effect of LTX-315 involves perturbation of plasma membrane and the mitochondria with subsequent release of danger-associated molecular pattern molecules, which highlights the ability of LTX-315 to induce complete regression and protective immune responses. Treatment with LTX-315 reprograms the tumor microenvironment by decreasing the local abundance of immunosuppressive cells and by increasing the frequency of effector T cells.
Collapse
|
9
|
A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One 2017; 12:e0174707. [PMID: 28358840 PMCID: PMC5373611 DOI: 10.1371/journal.pone.0174707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20–25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20–25), for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(a)anthracene, and tumors were treated with one of the following peptides: LfcinB(20–25)4, LfcinB(20–25), or vehicle (control). Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20–25)4 and LfcinB(20–25) was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively). Also, LfcinB(20–25)4 caused acellularity in the parenchymal tumor compared with LfcinB(20–25) and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20–25)4 and LfcinB(20–25) induced higher degree of apoptosis relative to the untreated tumors (75–86% vs 8%, respectively). Moreover, although the lowest inflammatory response was achieved when LfcinB(20–25)4 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20–25). In addition the cellular damage and selectivity of the LfcinB(20–25)4 peptide was evaluated in vitro. These assays showed that LfcinB(20–25)4 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20–25)4 could be considered as a new therapeutic agent for the treatment of OSCC.
Collapse
|
10
|
Eksteen JJ, Ausbacher D, Simon-Santamaria J, Stiberg T, Cavalcanti-Jacobsen C, Wushur I, Svendsen JS, Rekdal Ø. Iterative Design and in Vivo Evaluation of an Oncolytic Antilymphoma Peptide. J Med Chem 2016; 60:146-156. [PMID: 28004928 DOI: 10.1021/acs.jmedchem.6b00839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oncolytic peptides represent a promising new strategy within the field of cancer immunotherapy. Here we describe the systematic design and evaluation of short antilymphoma peptides within this paradigm. The peptides were tested in vitro and in vivo to identify a lead compound for further evaluation as novel oncolytic immunotherapeutic. In vitro tests revealed peptides with high activity against several lymphoma types and low cytotoxicity toward normal cells. Treated lymphoma cells exhibited a reduced mitochondrial membrane potential that resulted in an irreversible disintegration of their plasma membranes. No caspase activation or ultrastructural features of apoptotic cell death were observed. One of these peptides, 11, was shown to induce complete tumor regression and protective immunity following intralesional treatment of murine A20 B-lymphomas. Due to its selectivity for lymphoma cells and its ability to induce tumor-specific immune responses, 11 has the potential to be used in intralesional treatment of accessible lymphoma tumors.
Collapse
Affiliation(s)
- J Johannes Eksteen
- Lytix Biopharma AS , P.O. Box 6447, Siva Innovation Centre Tromsø, Tromsø NO-9294, Norway
| | | | | | | | | | | | - John S Svendsen
- Lytix Biopharma AS , P.O. Box 6447, Siva Innovation Centre Tromsø, Tromsø NO-9294, Norway
| | - Øystein Rekdal
- Lytix Biopharma AS , P.O. Box 6447, Siva Innovation Centre Tromsø, Tromsø NO-9294, Norway
| |
Collapse
|
11
|
Eike LM, Yang N, Rekdal Ø, Sveinbjørnsson B. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells. Oncotarget 2016; 6:34910-23. [PMID: 26472184 PMCID: PMC4741498 DOI: 10.18632/oncotarget.5308] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/01/2015] [Indexed: 02/01/2023] Open
Abstract
Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models.
Collapse
Affiliation(s)
- Liv-Marie Eike
- Department of Molecular Inflammation Research and Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Nannan Yang
- Department of Community Medicine, Faculty of Health University of Tromsø, Tromsø, Norway
| | - Øystein Rekdal
- Department of Molecular Inflammation Research and Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.,Lytix Biopharma, Oslo, Norway
| | - Baldur Sveinbjørnsson
- Department of Molecular Inflammation Research and Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
12
|
Haug BE, Camilio KA, Eliassen LT, Stensen W, Svendsen JS, Berg K, Mortensen B, Serin G, Mirjolet JF, Bichat F, Rekdal Ø. Discovery of a 9-mer Cationic Peptide (LTX-315) as a Potential First in Class Oncolytic Peptide. J Med Chem 2016; 59:2918-27. [PMID: 26982623 DOI: 10.1021/acs.jmedchem.5b02025] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncolytic immunotherapies represent a new promising strategy in the treatment of cancer. In our efforts to develop oncolytic peptides, we identified a series of chemically modified 9-mer cationic peptides that were highly effective against both drug-resistant and drug-sensitive cancer cells and with lower toxicity toward normal cells. Among these peptides, LTX-315 displayed superior anticancer activity and was selected as a lead candidate. This peptide showed relative high plasma protein binding abilities and a human plasma half-life of 160 min, resulting in formation of nontoxic metabolites. In addition, the lead candidate demonstrated relatively low ability to inhibit CYP450 enzymes. Collectively these data indicated that this peptide has potential to be developed as a new anticancer agent for intratumoral administration and is currently being evaluated in a phase I/IIa study.
Collapse
Affiliation(s)
- Bengt Erik Haug
- Lytix Biopharma AS , Sykehusveien 21, NO-9294 Tromsø, Norway.,Department of Chemistry and Centre for Pharmacy, University of Bergen , Allégaten 41, NO-5007 Bergen, Norway
| | - Ketil André Camilio
- Lytix Biopharma AS , Sykehusveien 21, NO-9294 Tromsø, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway , NO-9037 Tromsø, Norway
| | | | - Wenche Stensen
- Lytix Biopharma AS , Sykehusveien 21, NO-9294 Tromsø, Norway.,Department of Chemistry, UiT The Arctic University of Norway , NO-9037 Tromsø, Norway
| | - John Sigurd Svendsen
- Lytix Biopharma AS , Sykehusveien 21, NO-9294 Tromsø, Norway.,Department of Chemistry, UiT The Arctic University of Norway , NO-9037 Tromsø, Norway
| | - Kristel Berg
- Lytix Biopharma AS , Sykehusveien 21, NO-9294 Tromsø, Norway
| | | | | | | | | | - Øystein Rekdal
- Lytix Biopharma AS , Sykehusveien 21, NO-9294 Tromsø, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway , NO-9037 Tromsø, Norway
| |
Collapse
|
13
|
Liu BR, Huang YW, Aronstam RS, Lee HJ. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells. PLoS One 2016; 11:e0150439. [PMID: 26942714 PMCID: PMC4778846 DOI: 10.1371/journal.pone.0150439] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.
Collapse
Affiliation(s)
- Betty R. Liu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 974, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, 65409–1120, United States of America
| | - Robert S. Aronstam
- College of Science and Technology, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania, 17815–1301, United States of America
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 974, Taiwan
- * E-mail:
| |
Collapse
|
14
|
A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:630179. [PMID: 26609531 PMCID: PMC4644816 DOI: 10.1155/2015/630179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/16/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
Abstract
Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.
Collapse
|
15
|
Riedl S, Leber R, Rinner B, Schaider H, Lohner K, Zweytick D. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2918-31. [DOI: 10.1016/j.bbamem.2015.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/10/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022]
|
16
|
Li Y, Yu J. Research Progress in Structure-Activity Relationship of Bioactive Peptides. J Med Food 2015; 18:147-56. [DOI: 10.1089/jmf.2014.0028] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ying Li
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina, USA
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina, USA
| |
Collapse
|
17
|
Sivertsen A, Tørfoss V, Isaksson J, Ausbacher D, Anderssen T, Brandsdal BO, Havelkova M, Skjørholm AE, Strøm MB. Anticancer potency of small linear and cyclic tetrapeptides and pharmacokinetic investigations of peptide binding to human serum albumin. J Pept Sci 2014; 20:279-91. [PMID: 24677781 DOI: 10.1002/psc.2615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/21/2013] [Accepted: 12/26/2013] [Indexed: 12/25/2022]
Abstract
We have in the present study explored the anticancer activity against human Burkitt's lymphoma cells (Ramos) of a series of small linear and cyclic tetrapeptides containing a β2,2-amino acid with either two 2-naphthyl-methylene or two para-CF3-benzyl side chains, along with their interaction with the main plasma protein human serum albumin (HSA). The cyclic and more amphipathic tetrapeptides revealed a notably higher anticancer potency against Ramos cells [50% inhibitory concentration (IC50) 11–70 μM] compared to the linear tetrapeptide counterparts (IC50 18.7 to >413 μM). The most potent cyclic tetrapeptide c3 had a 16.5-fold preference for Ramos cells compared to human red blood cells, whereas the cyclic tetrapeptide c1 both showed low hemolytic activity and displayed the overall highest (2.9-fold) preference for Ramos cells (IC50 23 μM) compared to healthy human lung fibroblast cells (MRC-5). Investigating the interaction of selected tetrapeptides and recently reported hexapeptides with HSA revealed that the peptides bind to drug site II of HSA in the 22–28 μM range, disregarding size and overall structure. NMR and in silico molecular docking experiments identified the lipophilic residues as responsible for the interaction, but in vitro studies showed that the anticancer potency of the peptides varied in the presence of HSA and that c3 remained the most potent peptide. Based on our findings, we call for implementing serum albumin binding in development of anticancer peptides, as it may have implications for future administration and systemic distribution of peptide-based cancer drugs.
Collapse
|
18
|
Camilio KA, Berge G, Ravuri CS, Rekdal O, Sveinbjørnsson B. Complete regression and systemic protective immune responses obtained in B16 melanomas after treatment with LTX-315. Cancer Immunol Immunother 2014; 63:601-13. [PMID: 24676901 PMCID: PMC4024132 DOI: 10.1007/s00262-014-1540-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022]
Abstract
Malignant melanoma is the most aggressive and deadliest form of skin cancer due to its highly metastatic potential, which calls for new and improved therapies. Cationic antimicrobial peptides (CAPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line of defense against pathogens, and several CAPs have shown promising potential as novel anticancer agents. Structure-activity relationship studies on the CAP bovine lactoferricin allowed us to de novo design short chemically modified lytic anticancer peptides. In the present study, we investigated the in vivo antitumor effects of LTX-315 against intradermally established B16 melanomas in syngeneic mice. Intratumoral administration of LTX-315 resulted in tumor necrosis and the infiltration of immune cells into the tumor parenchyma followed by complete regression of the tumor in the majority of the animals. LTX-315 induced the release of danger-associated molecular pattern molecules such as the high mobility group box-1 protein in vitro and the subsequent upregulation of proinflammatory cytokines such as interleukin (IL) 1β, IL6 and IL18 in vivo. Animals cured by LTX-315 treatment were protected against a re-challenge with live B16 tumor cells both intradermally and intravenously. Together, our data indicate that intratumoral treatment with LTX-315 can provide local tumor control followed by protective immune responses and has potential as a new immunotherapeutic agent.
Collapse
|
19
|
Gu Y, Dong N, Shan A, Ma Q, Li J, Cheng B. Antitumor effect of the antimicrobial peptide GLI13-8 derived from domain of the avian β-defensin-4. Acta Biochim Biophys Sin (Shanghai) 2013; 45:904-11. [PMID: 24047976 DOI: 10.1093/abbs/gmt098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that GLI13-8, one of cationic antimicrobial peptides from linear avian β-defensin-4 (RL38) analogs, exhibited high antimicrobial activities against both Gram-negative and Gram-positive bacteria. In the present study, we reported the in vitro cytotoxicity of GLI13-8 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results showed that the cytotoxicity of GLI13-8 in three human carcinoma cells (HepG2, SGC7901, and A375) was in a dose-dependent manner. When the concentration of GLI13-8 is <128 μM, it had no toxicity towards the normal human fibroblasts (MRC-5). The Annexin-V-FITC/PI staining assay, the Hoechst 33258/PI staining assay, the permeability of fluorescein macromolecules and scanning electron microscope assays, mitochondrial membrane potential assay, caspases-3 and poly ADP-ribose polymerase (PARP) assays have been carried out. Results indicated that apoptosis was induced by GLI13-8 in HepG2 cells, and demonstrated that GLI13-8 induced loss of mitochondrial membrane potential, disruption of HepG2 cell membranes, and activation of caspase-3 and PARP. These findings suggested that GLI13-8 may be an effective agent for HepG2 cells.
Collapse
Affiliation(s)
- Yao Gu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
20
|
Wang C, Zhou Y, Li S, Li H, Tian L, Wang H, Shang D. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci 2013; 92:1004-14. [PMID: 23583573 DOI: 10.1016/j.lfs.2013.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/12/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
AIMS Temporin-1CEa, a 17-residue antimicrobial peptide, is known to exert broad-spectrum anticancer activity that acts preferentially on cancer cells instead of normal cells. However, the mechanism of cancer cell death induced by temporin-1CEa is weakly understood. MAIN METHODS Here, we investigated the cytotoxic and membrane-disrupting effects of temporin-1CEa on human breast cancer cell line Bcap-37, using MTT assay, electronic microscope observation, fluorescence imaging and flow cytometry analysis. KEY FINDINGS The MTT assay indicated that one-hour temporin-1CEa treatment led to rapid cell death in either caspase-dependent or -independent manner. The electronic microscope observation suggested that temporin-1CEa exposure resulted in profound morphological changes in Bcap-37 cells. The fluorescence imaging and flow cytometry analysis demonstrated that temporin-1CEa exhibited membrane-disrupting property characterized by induction of cell-surface phosphatidylserine exposure, elevation of plasma membrane permeability, and rapid transmembrane potential depolarization. Moreover, temporin-1CEa might also induce rapid cell death through mitochondria-involved mechanisms, including rapid intracellular Ca(2+) leakage, collapse of mitochondrial membrane potential (Δφm) and over-generation of reactive oxygen species (ROS). SIGNIFICANCE In summary, the present study indicates that temporin-1CEa triggers a rapid cytotoxicity in Bcap-37 cells through membrane-destruction and intracellular mechanisms involving mitochondria. These intracellular mechanisms and direct membrane-destruction effect were evaluated helping to understand the detail action of antimicrobial peptides in mammalian cancer cells.
Collapse
Affiliation(s)
- Che Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Potential anticarcinogenic peptides from bovine milk. JOURNAL OF AMINO ACIDS 2013; 2013:939804. [PMID: 23533710 PMCID: PMC3600311 DOI: 10.1155/2013/939804] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/28/2013] [Indexed: 11/18/2022]
Abstract
BOVINE MILK POSSESSES A PROTEIN SYSTEM CONSTITUTED BY TWO MAJOR FAMILIES OF PROTEINS: caseins (insoluble) and whey proteins (soluble). Caseins ( α S1, α S2, β , and κ ) are the predominant phosphoproteins in the milk of ruminants, accounting for about 80% of total protein, while the whey proteins, representing approximately 20% of milk protein fraction, include β -lactoglobulin, α -lactalbumin, immunoglobulins, bovine serum albumin, bovine lactoferrin, and lactoperoxidase, together with other minor components. Different bioactivities have been associated with these proteins. In many cases, caseins and whey proteins act as precursors of bioactive peptides that are released, in the body, by enzymatic proteolysis during gastrointestinal digestion or during food processing. The biologically active peptides are of particular interest in food science and nutrition because they have been shown to play physiological roles, including opioid-like features, as well as immunomodulant, antihypertensive, antimicrobial, antiviral, and antioxidant activities. In recent years, research has focused its attention on the ability of these molecules to provide a prevention against the development of cancer. This paper presents an overview of antitumor activity of caseins and whey proteins and derived peptides.
Collapse
|
22
|
Hansen T, Ausbacher D, Zachariassen ZG, Anderssen T, Havelkova M, Strøm MB. Anticancer activity of small amphipathic β²,²-amino acid derivatives. Eur J Med Chem 2012; 58:22-9. [PMID: 23085771 DOI: 10.1016/j.ejmech.2012.09.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/17/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022]
Abstract
We report the anticancer activity from screening of a series of synthetic β(2,2)-amino acid derivatives that were prepared to confirm the pharmacophore model of short cationic antimicrobial peptides with high anti-Staphylococcal activity. The most potent derivatives against human Burkitt's lymphoma (Ramos) cells displayed IC(50) values below 8 μM, and low toxicity against human red blood cells (EC(50) > 200 μM). A more than 5-fold preference for Ramos cancer cells compared to human lung fibroblasts (MRC-5 cells) was also obtained for the most promising β(2,2)-amino acid derivative 3-amino-N-(2-aminoethyl)-2,2-bis(naphthalen-2-ylmethyl)propanamide (5c). Screening of 5c at the National Cancer Institute (NCI, USA) confirmed its anticancer potency and revealed a very broad range of anticancer activity with IC(50) values of 0.32-3.89 μM against 59 different cancer cell lines. Highest potency was obtained against the colon cancer cell lines, a non-small cell lung cancer, a melanoma, and three leukemia cell lines included in the NCI screening panel. The reported β(2,2)-amino acid derivatives constitute a promising new class of anticancer agents based on their high anticancer potency, ease of synthesis, mode-of-action, and optimized pharmacokinetic properties compared to much larger antimicrobial peptides.
Collapse
Affiliation(s)
- Terkel Hansen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, NO-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
23
|
Tørfoss V, Isaksson J, Ausbacher D, Brandsdal BO, Flaten GE, Anderssen T, Cavalcanti-Jacobsen CDA, Havelkova M, Nguyen LT, Vogel HJ, Strøm MB. Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilic β(2,2) -amino acid. J Pept Sci 2012; 18:609-19. [PMID: 22933412 DOI: 10.1002/psc.2441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 01/26/2023]
Abstract
We have recently reported a series of synthetic anticancer heptapeptides (H-KKWβ(2,2) WKK-NH(2) ) containing a central achiral and lipophilic β(2,2) -amino acid that display low toxicity against non-malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising β(2,2) -amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitt's lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC-5). The results demonstrated a considerable increase in anticancer potency following head-to-tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High-resolution NMR studies and molecular dynamics simulations together with an annexin-V-FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents.
Collapse
Affiliation(s)
- Veronika Tørfoss
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, NO-9037, Tromsø, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rekdal Ø, Haug BE, Kalaaji M, Hunter HN, Lindin I, Israelsson I, Solstad T, Yang N, Brandl M, Mantzilas D, Vogel HJ. Relative spatial positions of tryptophan and cationic residues in helical membrane-active peptides determine their cytotoxicity. J Biol Chem 2012; 287:233-244. [PMID: 22057278 PMCID: PMC3249074 DOI: 10.1074/jbc.m111.279281] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/03/2011] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.
Collapse
Affiliation(s)
- Øystein Rekdal
- Institute of Medical Biology, Faculty of Medicine; Lytix Biopharma AS, NO-9294 Tromsø, Norway.
| | - Bengt Erik Haug
- Centre for Pharmacy and Department of Chemistry, University of Bergen, NO-5007 Bergen, Norway
| | | | - Howard N Hunter
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Inger Lindin
- Institute of Medical Biology, Faculty of Medicine
| | | | | | - Nannan Yang
- Institute of Medical Biology, Faculty of Medicine
| | - Martin Brandl
- Drug Transport and Delivery Group, Department of Pharmacy, University of Tromsø, NO-9037 Tromsø, Norway; Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dimitrios Mantzilas
- Department of Molecular Bioscience, University of Oslo, NO-0316 Oslo, Norway
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
25
|
Riedl S, Zweytick D, Lohner K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 2011; 164:766-81. [PMID: 21945565 PMCID: PMC3220766 DOI: 10.1016/j.chemphyslip.2011.09.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 12/22/2022]
Abstract
Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means. Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various strategies to enhance further selectivity and serum stability is expected to yield novel anticancer drugs with improved properties in respect of cancer cell toxicity as well as reduced development of drug resistance.
Collapse
Affiliation(s)
- Sabrina Riedl
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, Graz, Austria
| | | | | |
Collapse
|
26
|
Fadnes B, Uhlin-Hansen L, Lindin I, Rekdal Ø. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells. BMC Cancer 2011; 11:116. [PMID: 21453492 PMCID: PMC3080343 DOI: 10.1186/1471-2407-11-116] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/31/2011] [Indexed: 01/20/2023] Open
Abstract
Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS.
Collapse
Affiliation(s)
- Bodil Fadnes
- Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Norway.
| | | | | | | |
Collapse
|
27
|
Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo. Antimicrob Agents Chemother 2010; 55:218-28. [PMID: 20956602 DOI: 10.1128/aac.00904-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals.
Collapse
|
28
|
Chen YQ, Min C, Sang M, Han YY, Ma X, Xue XQ, Zhang SQ. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides 2010; 31:1504-10. [PMID: 20493915 DOI: 10.1016/j.peptides.2010.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/12/2010] [Accepted: 05/12/2010] [Indexed: 11/16/2022]
Abstract
Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent.
Collapse
Affiliation(s)
- Yu Qing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046, Jiangsu, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Berge G, Eliassen LT, Camilio KA, Bartnes K, Sveinbjørnsson B, Rekdal Ø. Therapeutic vaccination against a murine lymphoma by intratumoral injection of a cationic anticancer peptide. Cancer Immunol Immunother 2010; 59:1285-94. [PMID: 20422410 PMCID: PMC11030072 DOI: 10.1007/s00262-010-0857-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/12/2010] [Indexed: 12/19/2022]
Abstract
Cationic antimicrobial peptides (CAPs) exhibit promising anticancer activities. In the present study, we have examined the in vivo antitumoral effects of a 9-mer peptide, LTX-302, which is derived from the CAP bovine lactoferricin (LfcinB). A20 B cell lymphomas of BALB/c origin were established by subcutaneous inoculation in syngeneic mice. Intratumoral LTX-302 injection resulted in tumor necrosis and infiltration of inflammatory cells followed by complete regression of the tumors in the majority of the animals. This effect was T cell dependent, since the intervention was inefficient in nude mice. Successfully treated mice were protected against rechallenge with A20 cells, but not against Meth A sarcoma cells. Tumor resistance could be adoptively transferred with spleen cells from LTX-302-treated mice. Resistance was abrogated by depletion of T lymphocytes, or either the CD4(+) or CD8(+) T cell subsets. Taken together, these data suggest that LTX-302 treatment induced long-term, specific cellular immunity against the A20 lymphoma and that both CD4(+) and CD8(+) T cells were required. Thus, intratumoral administration of lytic peptide might, in addition to providing local tumor control, confer a novel strategy for therapeutic vaccination against cancer.
Collapse
Affiliation(s)
- Gerd Berge
- Tumor Biology Research Group, IMB, University of Tromsø, Tromsø, Norway
- Division of Immunology, IMB, University of Tromsø, Tromsø, Norway
| | - Liv Tone Eliassen
- Tumor Biology Research Group, IMB, University of Tromsø, Tromsø, Norway
- Lytix Biopharma, Tromsø Science Park, PO. Box 6447, 9294 Tromsø, Norway
| | - Ketil Andre Camilio
- Tumor Biology Research Group, IMB, University of Tromsø, Tromsø, Norway
- Lytix Biopharma, Tromsø Science Park, PO. Box 6447, 9294 Tromsø, Norway
| | - Kristian Bartnes
- Department of Cardiothoracic and Vascular Surgery, University Hospital North Norway, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Division of Immunology, IMB, University of Tromsø, Tromsø, Norway
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Øystein Rekdal
- Tumor Biology Research Group, IMB, University of Tromsø, Tromsø, Norway
- Lytix Biopharma, Tromsø Science Park, PO. Box 6447, 9294 Tromsø, Norway
| |
Collapse
|
30
|
Fadnes B, Rekdal O, Uhlin-Hansen L. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer 2009; 9:183. [PMID: 19527490 PMCID: PMC2703650 DOI: 10.1186/1471-2407-9-183] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 06/15/2009] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs. METHODS Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated. RESULTS We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity. CONCLUSION Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.
Collapse
Affiliation(s)
- Bodil Fadnes
- Department of Medical Biochemistry, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
31
|
Operationally convenient asymmetric synthesis of (S)-2-amino-3,3-bis-(4-fluorophenyl)propanoic acid. J Fluor Chem 2009. [DOI: 10.1016/j.jfluchem.2009.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:357-75. [PMID: 18078805 PMCID: PMC2238813 DOI: 10.1016/j.bbamem.2007.11.008] [Citation(s) in RCA: 888] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/23/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
Abstract
In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed.
Collapse
Affiliation(s)
- David W. Hoskin
- Departments of Pathology and Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
33
|
|
34
|
Mason AJ, Marquette A, Bechinger B. Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. Biophys J 2007; 93:4289-99. [PMID: 17766347 PMCID: PMC2098721 DOI: 10.1529/biophysj.107.116681] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cationic amphipathic alpha-helical peptides preferentially disrupt anionic lipids in mixed model membranes, potentially causing a catastrophic release of the cell contents or attenuation of the membrane potential. The effective role of such peptides requires considerable discrimination between target and host cells, which is likely to occur at the level of the cell membrane. Here, we explore the roles of a variety of common membrane constituents in mediating the interaction between the antimicrobial peptide pleurocidin and model membranes. We employ intrinsic tryptophan fluorescence and circular dichroism to observe the effect of increasing concentrations of sterol in the membrane on peptide binding, using (2)H solid-state NMR of chain deuterated lipids simultaneously to probe the effective chain disruption of the anionic phospholipid component of the membrane. We show that the degree of ordering of the lipid acyl chains in the membrane is dependent on the nature of the zwitterionic phospholipid headgroup in mixed anionic membranes. Furthermore, the presence of cholesterol and ergosterol increases acyl chain order in the liquid crystalline model membranes, but to differing degrees. Our results show how sterols can protect even negatively charged membranes from the disruptive effects of antimicrobial peptides, thereby providing a molecular view of the differences in sensitivity of various target membranes to linear cationic antibiotic peptides where bacteria (no sterols) are most susceptible, lower eukaryotes including fungi (containing ergosterol) exhibit an intermediate degree of sensitivity, and higher organisms (containing cholesterol) are largely resistant to antimicrobial peptides.
Collapse
Affiliation(s)
- A James Mason
- Faculté de chimie, Université Louis Pasteur/Centre National de la Recherche Scientifique UMR 7177, Institut le Bel, Strasbourg, France.
| | | | | |
Collapse
|
35
|
Synthesis of enantiomerically pure β,β-diphenylalanine (Dip) and fluorenylglycine (Flg). ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Oh HS, Kim S, Cho H, Lee KH. Development of novel lipid-peptide hybrid compounds with antibacterial activity from natural cationic antibacterial peptides. Bioorg Med Chem Lett 2004; 14:1109-13. [PMID: 14980646 DOI: 10.1016/j.bmcl.2003.12.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 12/24/2003] [Indexed: 11/15/2022]
Abstract
Seven depsipeptides were synthesized by appending seven amino acids (Lys, Leu, Val, Phe, Ser, Gln, and Pro) at the N-terminus of the active fragment [TE-(33-43)], respectively corresponding to the C-terminal beta sheet domain of tenecin 1, an antibacterial protein and their activities were measured against Staphylococcus aureus. Considering the relationship between the activity and the characteristic of amino acid at the N-terminal of the peptide, novel derivatives were designed and synthesized from TE-(33-43) by introduction of fatty acids at the N-terminal. In this process, we synthesized novel lipid-peptide hybrid compounds with a potent antibacterial activity and more improved bioavailabilities. We characterized the important structural parameters of the lipid-peptide hybrid compounds for the antibacterial activities.
Collapse
Affiliation(s)
- Hyun-Sik Oh
- Department of Chemistry, Inha University, 253 Younghyong-Dong, Nam-Gu, Inchon-City 402-751, South Korea
| | | | | | | |
Collapse
|