1
|
Kalita T, Mandal B. One‐Pot Synthesis of Amide, Dipeptide, Ester and Hydroxamate Using Oxyma and Thionyl Chloride (SOCl
2
). ChemistrySelect 2021. [DOI: 10.1002/slct.202103006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tapasi Kalita
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Bhubaneswar Mandal
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati Assam 781039 India
| |
Collapse
|
2
|
Mazzoccanti G, Manetto S, Ricci A, Cabri W, Orlandin A, Catani M, Felletti S, Cavazzini A, Ye M, Ritchie H, Villani C, Gasparrini F. High-throughput enantioseparation of Nα-fluorenylmethoxycarbonyl proteinogenic amino acids through fast chiral chromatography on zwitterionic-teicoplanin stationary phases. J Chromatogr A 2020; 1624:461235. [PMID: 32540075 DOI: 10.1016/j.chroma.2020.461235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
In this study, 31 racemates of Nα-FMOC (fluorenylmethoxycarbonyl) amino acids (AAs) with different chemico-physical characteristics (neutral nonpolar, neutral polar, acidic and basic) have been successfully resolved in fast enantioselective chromatography on recently-developed zwitterionic-teicoplanin chiral stationary phases (CSPs). The CSPs were prepared by covalently bonding the teicoplanin selector on fully-porous particles of narrow dispersion particle-size distribution (particle diameter 1.9 µm) and superficially-porous particles (2.0 µm). Both the zwitterionic-teicoplanin CSPs have proved to be ideal media for the separation of this important class of compounds. In particular, the zwitterionic CSP prepared on superficially-porous particles exhibited superior enantioselectivity and resolution, compared to that made of fully porous particles, in virtue of more favorable thermodynamics. The zwitterionic nature of these CSPs allowed avoiding the annoying effect of Donnan's exclusion of enantiomers from the stationary phase. This effect, on the opposite, was frequently observed on a commercial teicoplanin CSP (Teicoshell) employed for comparative purposes. Noticeably, on the zwitterionic-teicoplanin CSPs, by using either acetonitrile- or methanol-rich mobile phases (MPs), it was possible to favor speed over enantioresolution and vice versa. This work gives further replies to the request for rapid determination of enantiomeric excess of Nα-FMOC proteinogenic (and non-proteinogenic) AAs, typically used as preferred chiral synthons in the solid-phase synthesis of therapeutic peptides.
Collapse
Affiliation(s)
- Giulia Mazzoccanti
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy.
| | - Simone Manetto
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Antonio Ricci
- Fresenius Kabi iPSUM, piazza Maestri del Lavoro 7, 20063, Cernusco sul Naviglio (MI), Italy
| | - Walter Cabri
- Fresenius Kabi iPSUM, piazza Maestri del Lavoro 7, 20063, Cernusco sul Naviglio (MI), Italy; Department of Chemistry, Alma Mater Studiorum-University of Bologna, via Selmi2, 40126 Bologna, Italy
| | - Andrea Orlandin
- Fresenius Kabi iPSUM, piazza Maestri del Lavoro 7, 20063, Cernusco sul Naviglio (MI), Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Simona Felletti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Micheal Ye
- Sigma-Aldrich/ Supelco, 595 North Harrison Road, Bellefonte, PA, 16823, United States
| | - Harald Ritchie
- AMT Advanced Materials Technologies Inc., Wilmington, Delaware, USA
| | - Claudio Villani
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Gasparrini
- Department of Pharmaceutical Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Antonatou E, Verleysen Y, Madder A. Singlet oxygen-mediated one-pot chemoselective peptide-peptide ligation. Org Biomol Chem 2018; 15:8140-8144. [PMID: 28914947 DOI: 10.1039/c7ob02245j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We here describe a furan oxidation based site-specific chemical ligation approach using unprotected peptide segments. This approach involves two steps: after photooxidation of a furan-containing peptide, ligation is achieved by reaction of the unmasked keto-enal with C- or N-terminal α-nucleophilic moieties of the second peptide such as hydrazine or hydrazide to form a pyridazinium or pyrrolidinone linkage respectively.
Collapse
Affiliation(s)
- Eirini Antonatou
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium.
| | | | | |
Collapse
|
4
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Bacchi M, Jullian M, Sirigu S, Fould B, Huet T, Bruyand L, Antoine M, Vuillard L, Ronga L, Chavas LMG, Nosjean O, Ferry G, Puget K, Boutin JA. Total chemical synthesis, refolding, and crystallographic structure of fully active immunophilin calstabin 2 (FKBP12.6). Protein Sci 2016; 25:2225-2242. [PMID: 27670942 DOI: 10.1002/pro.3051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Abstract
Synthetic biology (or chemical biology) is a growing field to which the chemical synthesis of proteins, particularly enzymes, makes a fundamental contribution. However, the chemical synthesis of catalytically active proteins (enzymes) remains poorly documented because it is difficult to obtain enough material for biochemical experiments. We chose calstabin, a 107-amino-acid proline isomerase, as a model. We synthesized the enzyme using the native chemical ligation approach and obtained several tens of milligrams. The polypeptide was refolded properly, and we characterized its biophysical properties, measured its catalytic activity, and then crystallized it in order to obtain its tridimensional structure after X-ray diffraction. The refolded enzyme was compared to the recombinant, wild-type enzyme. In addition, as a first step of validating the whole process, we incorporated exotic amino acids into the N-terminus. Surprisingly, none of the changes altered the catalytic activities of the corresponding mutants. Using this body of techniques, avenues are now open to further obtain enzymes modified with exotic amino acids in a way that is only barely accessible by molecular biology, obtaining detailed information on the structure-function relationship of enzymes reachable by complete chemical synthesis.
Collapse
Affiliation(s)
- Marine Bacchi
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Magali Jullian
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Serena Sirigu
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Benjamin Fould
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Tiphaine Huet
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Lisa Bruyand
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Mathias Antoine
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Laurent Vuillard
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Luisa Ronga
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Leonard M G Chavas
- PROXIMA-1, Division Expériences, Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin-BP48, Gif-sur-Yvette CEDEX, 91192, France
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| | - Karine Puget
- Genepep, 12 Rue du Fer à Cheval, Saint-Jean-de-Védas, 34430, France
| | - Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie and Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy-sur-Seine, 78290, France
| |
Collapse
|
6
|
Herbst E, Shabat D. FRET-based cyanine probes for monitoring ligation reactions and their applications to mechanistic studies and catalyst screening. Org Biomol Chem 2016; 14:3715-28. [PMID: 26909686 DOI: 10.1039/c5ob02127h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an ever-increasing need to design better methods to selectively connect two molecules under mild aqueous conditions on a small scale. The process of finding such methods significantly relies on the employment of an appropriate assay. We report here a modular FRET-based assay to monitor such reactions and illustrate how the assay is used to monitor two particular reactions: native chemical ligation (NCL) and oxime ligation. For both reactions we show that by employing appropriately designed probes FRET measurements could be used to monitor the reaction's progress. We additionally demonstrate the usefulness of the developed probe system to study the mechanisms of the ligation reactions, for example, in monitoring the formation of a trimeric intermediate in the NCL reaction. Finally, we demonstrate that FRET measurements conducted in our system allow the quantification of the reaction yield and we show the application of our FRET-based assay to catalyst screening for the oxime ligation.
Collapse
Affiliation(s)
- E Herbst
- School of Chemistry, Department of Organic Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978 Israel
| | - D Shabat
- School of Chemistry, Department of Organic Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
7
|
Kent SBH. The critical role of peptide chemistry in the life sciences. J Pept Sci 2015; 21:136-8. [PMID: 25643657 DOI: 10.1002/psc.2754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022]
Abstract
Peptide chemistry plays a key role in the synthesis and study of protein molecules and their functions. Modern ligation methods enable the total synthesis of enzymes and the systematic dissection of the chemical basis of enzyme catalysis. Predicted developments in peptide science are described.
Collapse
Affiliation(s)
- Stephen B H Kent
- Department of Chemistry, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| |
Collapse
|
8
|
Malins LR, Payne RJ. Synthetic Amino Acids for Applications in Peptide Ligation–Desulfurization Chemistry. Aust J Chem 2015. [DOI: 10.1071/ch14568] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Native chemical ligation is a powerful tool for the convergent assembly of homogeneous peptide and protein targets from unprotected peptide fragments. The method involves the chemoselective coupling of a peptide thioester with a peptide bearing an N-terminal cysteine (Cys) residue and is mediated by the nucleophilic Cys thiol functionality. A widely adopted extension of the technique for the disconnection of protein targets at alanine (Ala) ligation junctions has been the application of post-ligation desulfurization protocols for the mild removal of the Cys thiol moiety. Recently, attention has turned to the construction of synthetic amino acid building blocks bearing suitably positioned β-, γ-, or δ-thiol ligation auxiliaries with a view to expanding the scope of the ligation–desulfurization manifold. To date, several thiol-derived amino acids have been prepared, greatly increasing the generality and flexibility of chemoselective ligation technologies for the chemical synthesis of diverse protein targets. This review will highlight the current synthetic approaches to these important amino acid building blocks.
Collapse
|
9
|
Kolesinska B, Rozniakowski KK, Fraczyk J, Relich I, Papini AM, Kaminski ZJ. The Effect of Counterion and Tertiary Amine on the Efficiency ofN-Triazinylammonium Sulfonates in Solution and Solid-Phase Peptide Synthesis. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402862] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Fang L, Wu C, Yu Z, Shang P, Cheng Y, Peng Y, Su W. Triphosgene-Mediated Couplings in the Solid Phase: Total Synthesis of Brachystemin A. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Harmand TJR, Murar CE, Bode JW. New chemistries for chemoselective peptide ligations and the total synthesis of proteins. Curr Opin Chem Biol 2014; 22:115-21. [DOI: 10.1016/j.cbpa.2014.09.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/10/2023]
|
12
|
Dev D, Palakurthy NB, Thalluri K, Chandra J, Mandal B. Ethyl 2-Cyano-2-(2-nitrobenzenesulfonyloxyimino)acetate (o-NosylOXY): A Recyclable Coupling Reagent for Racemization-Free Synthesis of Peptide, Amide, Hydroxamate, and Ester. J Org Chem 2014; 79:5420-31. [DOI: 10.1021/jo500292m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dharm Dev
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nani Babu Palakurthy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Thalluri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Jyoti Chandra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Franke L, Liebscher S, Bordusa F. Engineering the oxyanion hole of trypsin for promoting the reverse of proteolysis. J Pept Sci 2013; 20:128-36. [PMID: 24357225 DOI: 10.1002/psc.2597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/12/2022]
Abstract
Although proteases are capable of synthesizing peptide bonds via the reverse of proteolysis, they are not proficient at peptide fragment ligation. Further manipulations are needed to shift the native enzyme activity from the cleavage to the synthesis of peptides especially when longer peptides or even proteins are the target molecules of the reaction. This account reports on the synthetic potential of trypsin variants with engineered oxyanion holes mutated by proline mutations, which were designed to minimize proteolytic side reactions during peptide bond synthesis. From the six single and double proline-mutated trypsins, in particular, trypsinQ192P came out as the most promising biocatalyst enabling not only the ligation of cleavage-sensitive peptide fragments but also the selective N-terminal modification of a real protein substrate.
Collapse
Affiliation(s)
- Lars Franke
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle, Germany
| | - Sandra Liebscher
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle, Germany
| | - Frank Bordusa
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle, Germany
| |
Collapse
|
14
|
Malins LR, Mitchell NJ, Payne RJ. Peptide ligation chemistry at selenol amino acids. J Pept Sci 2013; 20:64-77. [DOI: 10.1002/psc.2581] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Lara R. Malins
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | | | - Richard J. Payne
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
15
|
Unverzagt C, Kajihara Y. Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem Soc Rev 2013; 42:4408-20. [PMID: 23403448 DOI: 10.1039/c3cs35485g] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Incremental developments in the chemistry of peptides, proteins and carbohydrates have enabled researchers to assemble entire glycoproteins with high precision. Based on sophisticated ligation chemistries pure glycoproteins bearing a single glycosylation pattern have become available. The impact of N-glycosylation on the function of glycoproteins is generally recognized but not well understood. Based on the recent advances in the synthesis of glycoproteins by chemical methods researchers can finally start to elucidate the various roles of carbohydrates in complex biomolecules in detail.
Collapse
Affiliation(s)
- Carlo Unverzagt
- Bioorganische Chemie, Gebäude NWI, Universität Bayreuth, 95440 Bayreuth, Germany.
| | | |
Collapse
|
16
|
Li J, Dong S, Townsend SD, Dean T, Gardella TJ, Danishefsky SJ. Chemistry as an Expanding Resource in Protein Science: Fully Synthetic and Fully Active Human Parathyroid Hormone-Related Protein (1-141). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Li J, Dong S, Townsend SD, Dean T, Gardella TJ, Danishefsky SJ. Chemistry as an expanding resource in protein science: fully synthetic and fully active human parathyroid hormone-related protein (1-141). Angew Chem Int Ed Engl 2012; 51:12263-7. [PMID: 23124999 DOI: 10.1002/anie.201207603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Jianfeng Li
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
18
|
Al-Warhi TI, Al-Hazimi HM, El-Faham A. Recent development in peptide coupling reagents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2012. [DOI: 10.1016/j.jscs.2010.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Morales RAV, Daly NL, Vetter I, Mobli M, Napier IA, Craik DJ, Lewis RJ, Christie MJ, King GF, Alewood PF, Durek T. Chemical Synthesis and Structure of the Prokineticin Bv8. Chembiochem 2010; 11:1882-8. [DOI: 10.1002/cbic.201000330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Origin of the chemical ligation concept for the total synthesis of enzymes (proteins). Biopolymers 2010; 94:iv-ix. [DOI: 10.1002/bip.21492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Vasileiou Z, Barlos KK, Gatos D, Adermann K, Deraison C, Barlos K. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. Biopolymers 2010; 94:339-49. [DOI: 10.1002/bip.21376] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Payne RJ, Wong CH. Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem Commun (Camb) 2010; 46:21-43. [DOI: 10.1039/b913845e] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Piontek C, Ring P, Harjes O, Heinlein C, Mezzato S, Lombana N, Pöhner C, Püttner M, Varón Silva D, Martin A, Schmid F, Unverzagt C. Semisynthesis of a Homogeneous Glycoprotein Enzyme: Ribonuclease C: Part 1. Angew Chem Int Ed Engl 2009; 48:1936-40. [DOI: 10.1002/anie.200804734] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Piontek C, Ring P, Harjes O, Heinlein C, Mezzato S, Lombana N, Pöhner C, Püttner M, Varón Silva D, Martin A, Schmid F, Unverzagt C. Semisynthese eines homogenen Glycoprotein-Enzyms: Ribonuclease C (Teil 1). Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804734] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Abstract
The engineering of proteins can illuminate their biological function and improve their performance in a variety of applications. Within the past decade, methods have been developed that facilitate the ability of chemists to manipulate proteins in a controlled manner. Here, we present the traceless Staudinger ligation as a strategy for the convergent chemical synthesis of proteins. This reaction unites a phosphinothioester and an azide to form an amide bond with no residual atoms. An important feature of this reaction is its ability to ligate peptides at noncysteine residues, thereby overcoming a limitation of alternative strategies. Attributes of the traceless Staudinger ligation are discussed, and an overall comparison of known reagents for effecting the reaction is presented. General methods are elaborated for the synthesis of the most efficacious phosphinothiol for mediating the traceless Staudinger ligation, as well as for the preparation of phosphinothioester and azide fragments and the ligation of peptides immobilized on a solid support. Together, this information facilitates the use of this emerging method to engineer proteins.
Collapse
|
26
|
Bastings MMC, van Baal I, Meijer EW, Merkx M. One-step refolding and purification of disulfide-containing proteins with a C-terminal MESNA thioester. BMC Biotechnol 2008; 8:76. [PMID: 18828922 PMCID: PMC2570673 DOI: 10.1186/1472-6750-8-76] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 10/01/2008] [Indexed: 01/07/2023] Open
Abstract
Background Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester. This uniquely reactive C-terminus can be used in native chemical ligation reactions to introduce synthetic groups or to immobilize proteins on surfaces and nanoparticles. Unfortunately, common refolding procedures for recombinant proteins that contain disulfide bonds do not preserve the thioester functionality and therefore novel refolding procedures need to be developed. Results A novel redox buffer consisting of MESNA and diMESNA showed a refolding efficiency comparable to that of GSH/GSSG and prevented loss of the protein's thioester functionality. Moreover, introduction of the MESNA/diMESNA redox couple in the cleavage buffer allowed simultaneous on-column refolding of Ribonuclease A and intein-mediated cleavage to yield Ribonuclease A with a C-terminal MESNA-thioester. The C-terminal thioester was shown to be active in native chemical ligation. Conclusion An efficient method was developed for the production of disulfide bond containing proteins with C-terminal thioesters. Introduction of a MESNA/diMESNA redox couple resulted in simultaneous on-column refolding, purification and thioester generation of the model protein Ribonuclease A.
Collapse
Affiliation(s)
- Maartje M C Bastings
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
| | | | | | | |
Collapse
|
27
|
Abstract
This tutorial review outlines the modern ligation methods that enable the efficient total chemical synthesis of enzymes and other protein molecules. Key to this success is the chemoselective reaction of unprotected synthetic peptides ('chemical ligation'). Notably, native chemical ligation enables the reaction of two unprotected peptides in aqueous solution at neutral pH to form a single product in near quantitative yield. Full-length synthetic polypeptides are folded to form the defined tertiary structure of the target protein molecule, which is characterized by mass spectrometry, NMR, and X-ray crystallography, in addition to biochemical and/or biological activity.
Collapse
Affiliation(s)
- Stephen B H Kent
- Department of Chemistry, Institute for Biophysical Dynamics, Center for Integrative Science, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
|
29
|
Soellner MB, Nilsson BL, Raines RT. Reaction mechanism and kinetics of the traceless Staudinger ligation. J Am Chem Soc 2007; 128:8820-8. [PMID: 16819875 DOI: 10.1021/ja060484k] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The traceless Staudinger ligation enables the formation of an amide bond between a phosphinothioester (or phosphinoester) and an azide without the incorporation of residual atoms. Here, the coupling of peptides by this reaction was characterized in detail. Experiments with [(18)O]H(2)O indicated that the reaction mediated by (diphenylphosphino)methanethiol proceeded by S-->N acyl transfer of the iminophosphorane intermediate to form an amidophosphonium salt, rather than by an aza-Wittig reaction and subsequent hydrolysis of the resulting thioimidate. A continuous (13)C NMR-based assay revealed that the rate-determining step in the Staudinger ligation of glycyl residues mediated by (diphenylphosphino)methanethiol was the formation of the initial phosphazide intermediate. Less efficacious coupling reagents and reaction conditions led to the accumulation of an amine byproduct (which resulted from a Staudinger reduction) or phosphonamide byproduct (which resulted from an aza-Wittig reaction). The Staudinger ligation mediated by (diphenylphosphino)methanethiol proceeded with a second-order rate constant (7.7 x 10(-3) M(-1) s(-1)) and yield (95%) that was unchanged by the addition of exogenous nucleophiles. Ligations mediated by phosphinoalcohols had lower rate constants or less chemoselectivity. Accordingly, (diphenylphosphino)methanethiol was judged to be the most efficacious known reagent for effecting the traceless Staudinger ligation.
Collapse
Affiliation(s)
- Matthew B Soellner
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
30
|
Tam A, Soellner MB, Raines RT. Water-soluble phosphinothiols for traceless staudinger ligation and integration with expressed protein ligation. J Am Chem Soc 2007; 129:11421-30. [PMID: 17713909 PMCID: PMC2851833 DOI: 10.1021/ja073204p] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The traceless Staudinger ligation is an effective means to synthesize an amide bond between two groups of otherwise orthogonal reactivity: a phosphinothioester and an azide. An important application of the Staudinger ligation is in the ligation of peptides at a variety of residues. Here, we demonstrate that the traceless Staudinger ligation can be achieved in water with a water-soluble reagent. Those reagents that provide a high yield of amide product discourage protonation of the nitrogen in the key iminophosphorane intermediate. The most efficacious reagent, bis(p-dimethylaminoethyl)phosphinomethanethiol, mediates the rapid ligation of equimolar substrates in water. This reagent is also able to perform a transthioesterification reaction with the thioester intermediate formed during intein-mediated protein splicing. Hence, the traceless Staudinger ligation can be integrated with expressed protein ligation, extending the reach of modern protein chemistry.
Collapse
Affiliation(s)
- Annie Tam
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | | | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
- Corresponding author. Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544;
| |
Collapse
|
31
|
Johnson ECB, Malito E, Shen Y, Rich D, Tang WJ, Kent SBH. Modular total chemical synthesis of a human immunodeficiency virus type 1 protease. J Am Chem Soc 2007; 129:11480-90. [PMID: 17705484 DOI: 10.1021/ja072870n] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As part of our ongoing studies of the human immunodeficiency virus type 1 (HIV-1) protease enzyme, we set out to develop a modular chemical synthesis of the protein from multiple peptide segments. Our initial attempts were frustrated by the insolubility of intermediate peptide products. To overcome this problem, we designed a synthetic strategy combining the solubility-enhancing properties of C-terminal (Arg)n tags and the biological phenomenon of autoprocessing of the Gag-Pol polyprotein that occurs during maturation of the HIV-1 virus in vivo. Synthesis of a 119-residue peptide chain containing 10 residues of the reverse transcriptase (RT) open reading frame plus an (Arg)(10) tag at the C-terminus was straightforward by native chemical ligation followed by conversion of the Cys residues to Ala by Raney nickel desulfurization. The product polypeptide itself completed the final synthetic step by removing the C-terminal modification under folding conditions, to give the mature 99-residue polypeptide. High-purity homodimeric HIV-1 protease protein was obtained in excellent yield and had full enzymatic activity; the structure of the synthetic enzyme was confirmed by X-ray crystallography to a resolution of 1.07 A. This efficient modular synthesis by a biomimetic autoprocessing strategy will enable the facile synthesis of unique chemical analogues of the HIV-1 protease to further elucidate the molecular basis of enzyme catalysis.
Collapse
Affiliation(s)
- Erik C B Johnson
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
32
|
Tuchscherer G, Chandravarkar A, Camus MS, Bérard J, Murat K, Schmid A, Mimna R, Lashuel HA, Mutter M. Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis. Biopolymers 2007; 88:239-52. [PMID: 17206626 DOI: 10.1002/bip.20663] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide self-assembly into beta-sheets and amyloid beta (Abeta) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed switch-peptides that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N-acyl migration in flexible and soluble folding precursors containing Ser- or Thr-derived switch (S)-elements. The elaborated methodologies are exemplified for the in situ conversion of NPY- and Cyclosporine A-derived prodrugs, as well as for the onset and reversal of alpha and beta conformational transitions in Abeta peptides. In combining orthogonally addressable switch-elements, the consecutive switching on of S-elements gives new insights into the role of individual peptide segments (hot spots) in early processes of polypeptide self-assembly and fibrillogenesis. Finally, the well-known secondary structure disrupting effect of pseudoprolines (PsiPro) is explored for its use as a building block (S-element) in switch-peptides. To this end, synthetic strategies are described, allowing for the preparation of PsiPro-containing folding precursors, exhibiting flexible random-coil conformations devoid of fibril forming propensity. The onset of beta-sheet and fibril formation by restoring the native peptide chain in a single step classify PsiPro-units as the most powerful tool for inhibiting peptide self-assembly, and complement the present methodologies of the switch-concept for the study of fibrillogenesis.
Collapse
Affiliation(s)
- Gabriele Tuchscherer
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Becker CFW, Marsac Y, Hazarika P, Moser J, Goody RS, Niemeyer CM. Functional immobilization of the small GTPase Rab6A on DNA-Gold nanoparticles by using a site-specifically attached poly(ethylene glycol) linker and thiol place-exchange reaction. Chembiochem 2007; 8:32-6. [PMID: 17121405 DOI: 10.1002/cbic.200600422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christian F W Becker
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The diversity and complexity of structures and functions in synthetic polymer systems can be increased through conjugation with biological segments or, in other words, through generation of "polymer-bioconjugates" or "macromolecular chimeras". The present contribution highlights major synthetic approaches toward sophisticated functional hybrid block copolymers and analyses of structure-function relationships.
Collapse
Affiliation(s)
- Hans G Börner
- Max Planck Institute of Colloids and Interfaces, Colloid Department, Research Campus Golm, Potsdam, 14424, Germany.
| | - Helmut Schlaad
- Max Planck Institute of Colloids and Interfaces, Colloid Department, Research Campus Golm, Potsdam, 14424, Germany.
| |
Collapse
|
35
|
Durek T, Torbeev VY, Kent SBH. Convergent chemical synthesis and high-resolution x-ray structure of human lysozyme. Proc Natl Acad Sci U S A 2007; 104:4846-51. [PMID: 17360367 PMCID: PMC1829227 DOI: 10.1073/pnas.0610630104] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this article, we report the total chemical synthesis of human lysozyme. Lysozyme serves as a widespread model system in various fields of biochemical research, including protein folding, enzyme catalysis, and amyloidogenesis. The 130-aa wild-type polypeptide chain of the human enzyme was assembled from four polypeptide segments by using native chemical ligation in a fully convergent fashion. Key to the assembly strategy is the application of the recently developed kinetically controlled ligation methodology, which provides efficient control over the ligation of two peptide (alpha)thioesters to yield a unique product. This result enables the facile preparation of a 64-residue peptide (alpha)thioester; this segment is joined by native chemical ligation to a 66-aa Cys peptide, to yield the target 130-aa polypeptide chain. The synthetic polypeptide chain was folded in vitro into a defined tertiary structure with concomitant formation of four disulfides, as shown by 2D TOCSY NMR spectroscopy. The structure of the synthetic human lysozyme was confirmed by high-resolution x-ray diffraction, giving the highest-resolution structure (1.04 A) observed to date for this enzyme. Synthetic lysozyme was obtained in good yield and excellent purity and had full enzymatic activity. This facile and efficient convergent synthesis scheme will enable preparation of unique chemical analogs of the lysozyme molecule and will prove useful in numerous areas of lysozyme research in the future.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Biophysical Dynamics, Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637
| | - Vladimir Yu. Torbeev
- Institute for Biophysical Dynamics, Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637
| | - Stephen B. H. Kent
- Institute for Biophysical Dynamics, Department of Biochemistry and Molecular Biology, Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Abstract
The Staudinger ligation provides a means to form an amide bond between a phosphinothioester and azide. This reaction holds promise for the ligation of peptides en route to the total chemical synthesis of proteins. (Diphenylphosphino)methanethiol is the most efficacious of known reagents for mediating the Staudinger ligation of peptides, providing high (> 90%) isolated yields for equimolar couplings in which a glycine residue is at the nascent junction. Surprisingly, the yields are lower (< 50%) for non-glycyl couplings due to an aza-Wittig reaction that diverts the reaction toward a phosphonamide byproduct. Here, the partitioning of the reaction toward Staudinger ligation (and away from the aza-Wittig reaction) is shown to increase with increasing electron density on phosphorus. This electron density can be tuned either by installing functional groups on the phenyl substituents of (diphenylphosphino)methanethiol or by changing the polarity of the solvent. Installing p-methoxy groups and using a solvent of low polarity (such as toluene or dioxane) provide especially high (> 80%) isolated yields for the ligation of two non-glycyl residues. These conditions retain the high chemoselectivity of the reaction and do not lead to a substantial change in reaction rate. The traceless Staudinger ligation is now poised to enable the iterative ligation of peptides with little regard for their sequence, as well as the synthesis of amide bonds for other purposes.
Collapse
Affiliation(s)
| | - Annie Tam
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706
- Corresponding author. Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544; E-mail:
| |
Collapse
|
37
|
Bark SJ, Hook V. The future of proteomic analysis in biological systems and molecular medicine. ACTA ACUST UNITED AC 2007; 3:14-7. [PMID: 17216050 DOI: 10.1039/b611446f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteomics is the study of proteins and their interactions within complex biological systems. While this field is often associated with mass spectrometry, it is more useful to consider proteomics in the context of an objective: to identify and understand the molecular basis of health and disease at the protein level in vivo. Achieving this objective will require (1) technological developments to resolve current instrument limitations and (2) multidisciplinary integration of biological and protein analysis technologies to answer important questions in both the biological sciences and molecular medicine.
Collapse
Affiliation(s)
- Steven J Bark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., MC 0744, La Jolla, CA 92093-0744, USA.
| | | |
Collapse
|
38
|
Hilpert K, Winkler DFH, Hancock REW. Cellulose-bound Peptide Arrays: Preparation and Applications. Biotechnol Genet Eng Rev 2007; 24:31-106. [DOI: 10.1080/02648725.2007.10648093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Chessari S, Thomas R, Polticelli F, Luisi PL. The Production ofde novo Folded Proteins by a Stepwise Chain Elongation: A Model for Prebiotic Chemical Evolution of Macromolecular Sequences. Chem Biodivers 2006; 3:1202-10. [PMID: 17193233 DOI: 10.1002/cbdv.200690121] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe an experimental procedure to mimic the formation of long (over 40 residues) co-oligopetide sequences in many identical copies which may have occurred in the prebiotic molecular evolution. The basic hypothesis is that chain formation is based on the stepwise fragment condensation of randomly generated short oligopeptides, whereby the elongation takes place under the contingent environmental constraints (solubility, pH, salinity), which eliminate most of the products, and thus determine the selection towards one particular small set of chains. The present work aims at verifying the validity of this scheme. In order to do so, we utilize a classic synthetic procedure based on the Merrifield solid-phase synthesis of peptides for the synthesis of randomly produced peptides as well as for their stepwise fragment condensation. Thus, starting from a library of peptides with n=10, the first condensation step produces a library of 16 peptides with 20 residues each (n=20), of which only four remain water-soluble and, therefore, capable to undergo the next fragment condensation step. This gives rise to 16 peptides with n=30, out of which twelve precipitate out under the chosen pH and buffer conditions and are eliminated. Finally, a 44-residue-long water-soluble de novo protein is obtained. This has no homologies or similarities with extant proteins, and, based on circular dichroism (CD), it assumes a stable three-dimensional folding. In agreement with CD data, molecular-modelling simulations suggest an helical fold for the protein with poor, if any, structural homology with known proteins. The implication of this procedure as a general mechanism for the etiology of de novo macromolecular sequences and globular proteins in the origin of life is briefly discussed.
Collapse
Affiliation(s)
- Salvatore Chessari
- Department of Materials, Swiss Federal Institute of Technology, ETHZ, CH-8093 Zürich
| | | | | | | |
Collapse
|
40
|
Marsac Y, Cramer J, Olschewski D, Alexandrov K, Becker CFW. Site-Specific Attachment of Polyethylene Glycol-like Oligomers to Proteins and Peptides. Bioconjug Chem 2006; 17:1492-8. [PMID: 17105228 DOI: 10.1021/bc0601931] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of proteins with polymers is a viable method to tune protein properties, e.g., to render them more water-soluble by using hydrophilic polymers. We have utilized precision-length, polyethylene glycol-based oligomers carrying a thioester moiety in transthioesterification and native chemical ligation reactions with internal and N-terminal cysteine residues in proteins and peptides. These reactions lead to uniquely modified proteins with an increased solubility in chaotrope- and detergent-free aqueous systems. Polymer modification of internal cysteines is fully reversible and allows generation of stable protein-polymer conjugates for enzymatic manipulations as demonstrated by proteolytic cleavage of a protein construct that was only soluble in buffers incompatible with protease activity before polymer modification. The permanent polymer modification of a Rab protein at its N-terminal cysteine produced a fully active Rab variant that was efficiently prenylated. Thus, PEGylation of prenylated proteins might be a viable route to increase water solubility of such proteins in order to carry out experiments in detergent- and lipid-free systems.
Collapse
Affiliation(s)
- Yoann Marsac
- Max-Planck Institute of Molecular Physiology, Department of Physical Biochemistry, Otto-Hahn Str. 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
41
|
Synthetic Approaches to Disulfide-free Circular Bovine Pancreatic Trypsin Inhibitor (c-BPTI) Analogues. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9023-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Durek T, Becker CFW. Protein semi-synthesis: New proteins for functional and structural studies. ACTA ACUST UNITED AC 2005; 22:153-72. [PMID: 16188500 DOI: 10.1016/j.bioeng.2005.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 12/19/2022]
Abstract
Our ability to alter and control the structure and function of biomolecules, and of proteins in particular, will be of utmost importance in order to understand their respective biological roles in complex systems such as living organisms. This challenge has prompted the development of powerful modern techniques in the fields of molecular biology, physical biochemistry and chemical biology. These fields complement each other and their successful combination has provided unique insights into protein structure and function at the level of isolated molecules, cells and organisms. Chemistry is without doubt most suited for introducing subtle changes into biomolecules down to the atomic level, but often struggles when it comes to large targets, such as proteins. In this review, we attempt to give an overview of modern and broadly applicable techniques that permit chemical synthesis to be applied to complex protein targets in order to gain control over their structure and function. As will be demonstrated, these approaches offer unique possibilities in our efforts to understand the molecular basis of protein functioning in vitro and in vivo. We will discuss modern synthetic reactions that can be applied to proteins and give examples of recent highlights. Another focus of this review will be the application of inteins as versatile protein engineering tools.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
43
|
Kamiński ZJ, Kolesińska B, Kolesińska J, Sabatino G, Chelli M, Rovero P, Błaszczyk M, Główka ML, Papini AM. N-Triazinylammonium Tetrafluoroborates. A New Generation of Efficient Coupling Reagents Useful for Peptide Synthesis. J Am Chem Soc 2005; 127:16912-20. [PMID: 16316237 DOI: 10.1021/ja054260y] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new generation of triazine-based coupling reagents (TBCRs), designed according to the concept of "superactive esters", was obtained by treatment of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) chloride with lithium or silver tetrafluoroborate. The structure of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate was confirmed by X-ray diffraction. Activation of carboxylic acids by using this reagent proceeds via triazine "superactive ester". The coupling reagent was successfully used for the synthesis of Z-, Boc-, and Fmoc-protected dipeptides derived from natural and unnatural sterically hindered amino acids and for fragment condensation, in 80-100% yield and with high enantiomeric purity. The manual SPPS of the ACP(65-74) peptide fragment (H-Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile-Asn-Gly-OH) proceeded significantly faster than with TBTU or HATU, as well as the automated SPPS of the same fragment gave a purer product than by using TBTU or PyBOP. The reagent was also demonstrated to be efficient in on-resin head-to-tail cyclization of constrained cyclopeptides, in SPPS synthesis of Aib peptides, and in the synthesis of esters from appropriate acids, alcohols, and phenols. The high efficiency and versatility of this new generation of TBCRs confirm, for the first time, the usefulness of the concept of "superactive esters" in rational design of the structure of coupling reagents.
Collapse
|
44
|
Penhoat M, Leleu S, Dupas G, Papamicaël C, Marsais F, Levacher V. Meyers’ bicyclic lactam formation under mild and highly stereoselective conditions. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.09.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Abstract
Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins.
Collapse
Affiliation(s)
- Bradley L. Nilsson
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Matthew B. Soellner
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
46
|
Brunsveld L, Watzke A, Durek T, Alexandrov K, Goody RS, Waldmann H. Synthesis of Functionalized Rab GTPases by a Combination of Solution- or Solid-Phase Lipopeptide Synthesis with Expressed Protein Ligation. Chemistry 2005; 11:2756-72. [PMID: 15729676 DOI: 10.1002/chem.200401041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prenylated proteins with non-native functionalities are generally very difficult to obtain by recombinant or enzymatic means. The semisynthesis of preparative amounts of prenylated Rab guanosine triphosphatases (GTPases) from recombinant proteins and synthetic prenylated peptides depends largely on the availability of functionalised prenylated peptides corresponding to the proteins' native structure or modifications thereof. Here, we describe and compare solution-phase and solid-phase strategies for the generation of peptides corresponding to the prenylated C terminus of Rab7 GTPase. The solid-phase with utilisation of a hydrazide linker emerges as the more favourable approach. It allows a fast and practical synthesis of pure peptides and gives a high degree of flexibility in their modification. To facilitate the analysis of semisynthetic proteins, the synthesised peptides were equipped with a fluorescent group. Using the described approach, we introduced fluorophores at several different positions of the Rab7 C terminus. The position of the incorporated fluorescent groups in the peptides did not influence the protein-ligation reaction, as the generated peptides could be ligated onto thioester-tagged Rab7. However, it was found that the positioning of the fluorescent group had an influence on the functionality of the Rab7 proteins; analysis of the interaction of the semisynthetic Rab7 proteins with REP (Rab escort protein) and GDI (guanosine diphosphate dissociation inhibitor) molecules revealed that modification of the peptide side chains or of the C-terminal isoprenoid did not significantly interfere with complex formation. However, functionalisation of the C terminus was found to have an adverse effect on complex formation and stability, possibly reflecting low structural flexibility of the Rab GDI/REP molecules in the vicinity of the lipid-binding site.
Collapse
Affiliation(s)
- Luc Brunsveld
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Doerr AJ, McLendon GL. Design, folding, and activities of metal-assembled coiled coil proteins. Inorg Chem 2005; 43:7916-25. [PMID: 15578825 DOI: 10.1021/ic0490573] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal ions serve many purposes in natural proteins, from the stabilization of tertiary structure to the direction of protein folding to crucial roles in electron transfer and catalysis. There is considerable interest in creating metal binding sites in designed proteins to understand the structural role of metal ions and to design new metalloproteins with useful functions. The de novo design of metalloproteins and the role of metals in the folding of designed proteins are reviewed here, with particular focus on the design, folding, and activities of the [M(bpy-peptide)(3)](2+) structure. This maquette is constructed by the covalent attachment of 2,2'-bipyridine to the N-termini of amphiphilic peptides, and it is assembled into a folded trimeric coiled coil by the addition of a six-coordinate transition metal ion and the resulting hydrophobic collapse of the peptides. The [M(bpy-peptide)(3)](2+) structure has been employed in diverse applications, ranging from electron transfer pathway studies to the study of optimal hydrophobic packing in a virtual library to the construction of receptors and biosensors.
Collapse
Affiliation(s)
- Allison J Doerr
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
48
|
Tulla-Puche J, Getun I, Alsina J, Albericio F, Barany G. Synthetic Circularized Analogues of Bovine Pancreatic Trypsin Inhibitor. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Abstract
The solid-phase methodology is key for an effective synthesis of peptides, from a milligram scale for research to a multi-kilo scale for drug production. Indeed, small peptides containing up to 20-30 amino acids are most readily synthesized by a solid-phase strategy. Larger peptides (up to 60 amino acids) should be synthesized by a convergent approach (i.e. synthesis of protected constituent peptides in solid-phase and combination of these units in solution). Larger peptides and proteins are prepared by chemical ligation, where unprotected segments have been prepared in solid-phase.
Collapse
Affiliation(s)
- Fernando Albericio
- Department of Organic Chemistry, Martí i Franqués 1, University of Barcelona, 08028-Barcelona, Spain.
| |
Collapse
|