1
|
Fischle A, Lutsch M, Hübner F, Schäker-Hübner L, Schürmann L, Hansen FK, Kalinina SA. Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:51. [PMID: 39177677 PMCID: PMC11343938 DOI: 10.1007/s13659-024-00473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Apicidins are a class of naturally occurring cyclic tetrapeptides produced by few strains within the Fusarium genus. These secondary metabolites have gained significant attention due to their antiprotozoal activity through HDAC inhibition, thereby highlighting their potential for the treatment of malaria. Predominantly, apicidins have been isolated from Fusarium semitectum, offering a deep insight into the biosynthetic pathway responsible for their formation. A similar biosynthetic gene cluster has also been identified in the rice pathogenic fungus F. fujikuroi, leading the discovery of three additional apicidins through genetic manipulation. Routine mass spectrometric screening of these compound-producing strains revealed another metabolite structurally related to previously studied apicidins. By optimizing culture conditions and developing an effective isolation method, we obtained a highly pure substance, whose chemical structure was fully elucidated using NMR and HRMS fragmentation. Further studies were conducted to determine cytotoxicity, antimalarial activity, and HDAC inhibitory activity of this new secondary metabolite alongside the previously known apicidins. This work not only expands the apicidin class with a new member but also provides extensive insights and comparative analysis of apicidin-like substances produced by F. fujikuroi.
Collapse
Affiliation(s)
- Alica Fischle
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
- Graduate School of Natural Products, Corrensstraße 43, 48149, Münster, Germany
| | - Mika Lutsch
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Florian Hübner
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An Der Immenburg 4, 53121, Bonn, Germany
| | - Lina Schürmann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An Der Immenburg 4, 53121, Bonn, Germany
| | - Svetlana A Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
- Graduate School of Natural Products, Corrensstraße 43, 48149, Münster, Germany.
| |
Collapse
|
2
|
Herlan CN, Sonnefeld A, Gloge T, Brückel J, Schlee LC, Muhle-Goll C, Nieger M, Bräse S. Macrocyclic Tetramers-Structural Investigation of Peptide-Peptoid Hybrids. Molecules 2021; 26:molecules26154548. [PMID: 34361700 PMCID: PMC8348019 DOI: 10.3390/molecules26154548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Anna Sonnefeld
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Thomas Gloge
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Julian Brückel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Luisa Chiara Schlee
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.S.); (T.G.); (C.M.-G.)
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; (C.N.H.); (J.B.); (L.C.S.)
- Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
3
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Appavoo SD, Huh S, Diaz DB, Yudin AK. Conformational Control of Macrocycles by Remote Structural Modification. Chem Rev 2019; 119:9724-9752. [DOI: 10.1021/acs.chemrev.8b00742] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Solomon D. Appavoo
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sungjoon Huh
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Diego B. Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
6
|
Prasher P, Sharma M. Tailored therapeutics based on 1,2,3-1 H-triazoles: a mini review. MEDCHEMCOMM 2019; 10:1302-1328. [PMID: 31534652 PMCID: PMC6748286 DOI: 10.1039/c9md00218a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Contemporary drug discovery approaches rely on library synthesis coupled with combinatorial methods and high-throughput screening to identify leads. However, due to the multitude of components involved, a majority of optimization techniques face persistent challenges related to the efficiency of synthetic processes and the purity of compound libraries. These methods have recently found an upgradation as fragment-based approaches for target-guided synthesis of lead molecules with active involvement of their biological target. The click chemistry approach serves as a promising tool for tailoring the therapeutically relevant biomolecules of interest, improving their bioavailability and bioactivity and redirecting them as efficacious drugs. 1,2,3-1H-Triazole nucleus, being a planar and biologically acceptable scaffold, plays a crucial role in the design of biomolecular mimetics and tailor-made molecules with therapeutic relevance. This versatile scaffold also forms an integral part of the current fragment-based approaches for drug design, kinetic target guided synthesis and bioorthogonal methodologies.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India . ;
| |
Collapse
|
7
|
Kitir B, Maolanon AR, Ohm RG, Colaço AR, Fristrup P, Madsen AS, Olsen CA. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities. Biochemistry 2017; 56:5134-5146. [DOI: 10.1021/acs.biochem.7b00725] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Betül Kitir
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Alex R. Maolanon
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ragnhild G. Ohm
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Ana R. Colaço
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Peter Fristrup
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Andreas S. Madsen
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center
for Biopharmaceuticals and Department for Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally Absorbed Cyclic Peptides. Chem Rev 2017; 117:8094-8128. [PMID: 28541045 DOI: 10.1021/acs.chemrev.6b00838] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability. Here we describe 125 cyclic peptides containing four to thirty-seven amino acids that are orally absorbed by mammals. Cyclization minimizes degradation in the gut, blood, and tissues by removing cleavable N- and C-termini and by shielding components from metabolic enzymes. Cyclization also folds peptides into bioactive conformations that determine exposure of polar atoms to solvation by water and lipids and therefore can influence oral bioavailability. Key chemical properties thought to influence oral absorption and bioavailability are analyzed, including molecular weight, octanol-water partitioning, hydrogen bond donors/acceptors, rotatable bonds, and polar surface area. The cyclic peptides violated to different degrees all of the limits traditionally considered to be important for oral bioavailability of drug-like small molecules, although fewer hydrogen bond donors and reduced flexibility generally favored oral absorption.
Collapse
Affiliation(s)
- Daniel S Nielsen
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Nicholas E Shepherd
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
10
|
Wu H, She F, Gao W, Prince A, Li Y, Wei L, Mercer A, Wojtas L, Ma S, Cai J. The synthesis of head-to-tail cyclic sulfono-γ-AApeptides. Org Biomol Chem 2015; 13:672-6. [DOI: 10.1039/c4ob02232g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head-to-tail cyclic sulfono-γ-AApeptides.
Collapse
Affiliation(s)
- Haifan Wu
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Fengyu She
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Wenyang Gao
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Austin Prince
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Yaqiong Li
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Lulu Wei
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Allison Mercer
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Lukasz Wojtas
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Shengqian Ma
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Jianfeng Cai
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| |
Collapse
|
11
|
Culf AS, Čuperlović-Culf M, Léger DA, Decken A. Small head-to-tail macrocyclic α-peptoids. Org Lett 2014; 16:2780-3. [PMID: 24797336 DOI: 10.1021/ol501102b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and efficient methodology for the head-to-tail macrocyclization of small 3-mer, 4-mer, and 5-mer α-peptoid acids (9-, 12-, and 15-atom N-substituted glycine oligomers) is described. The cyclic trimer has a ccc amide sequence in the crystal structure, whereas the tetramer has ctct and the pentamer has ttccc stereochemistry. NMR analysis reveals rigid structures in solution. These synthetic macrocycles may prove useful in medicinal and materials applications.
Collapse
Affiliation(s)
- Adrian S Culf
- Atlantic Cancer Research Institute , 35 Providence Street, Moncton, NB E1C 8X3, Canada
| | | | | | | |
Collapse
|
12
|
von Bargen KW, Niehaus EM, Bergander K, Brun R, Tudzynski B, Humpf HU. Structure elucidation and antimalarial activity of apicidin F: an apicidin-like compound produced by Fusarium fujikuroi. JOURNAL OF NATURAL PRODUCTS 2013; 76:2136-2140. [PMID: 24195442 DOI: 10.1021/np4006053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Apicidins are cyclic tetrapeptides with histone deacetylase inhibitory activity. Since their discovery in 1996 a multitude of studies concerning the activity against protozoa and certain cancer cell lines of natural and synthetic apicidin analogues have been published. Until now, the only published natural sources of apicidin are the fungus Fusarium pallidoroseum, later known as F. semitectum and two unspecified Fusarium strains. The biosynthetic origin of apicidins could be associated with a gene cluster, and a biosynthetic pathway has been proposed. Recently, our group was able to identify for the first time an apicidin-like gene cluster in F. fujikuroi that apparently does not lead to the production of any known apicidin analogue. By overexpressing the pathway-specific transcription factor we were able to identify a new apicidin-like compound. The present study provides the complete structure elucidation of the new compound, named apicidin F. Activity evaluation against Plasmodium falciparum showed good in vitro activity with an IC50 value of 0.67 μM.
Collapse
|
13
|
Salvador LA, Luesch H. Discovery and mechanism of natural products as modulators of histone acetylation. Curr Drug Targets 2012; 13:1029-47. [PMID: 22594471 DOI: 10.2174/138945012802008973] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/30/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022]
Abstract
Small molecules that modulate histone acetylation by targeting key enzymes mediating this posttranslational modification - histone acetyltransferases and histone deacetylases - are validated chemotherapeutic agents for the treatment of cancer. This area of research has seen a rapid increase in interest in the past decade, with the structurally diverse natural products-derived compounds at its forefront. These secondary metabolites from various biological sources target this epigenetic modification through distinct mechanisms of enzyme regulation by utilizing a diverse array of pharmacophores. We review the discovery of these compounds and discuss their modes of inhibition together with their downstream biological effects.
Collapse
Affiliation(s)
- Lilibeth A Salvador
- Department of Medicinal Chemistry, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
14
|
Olsen CA, Montero A, Leman LJ, Ghadiri MR. Macrocyclic peptoid-Peptide hybrids as inhibitors of class I histone deacetylases. ACS Med Chem Lett 2012; 3:749-53. [PMID: 24900543 DOI: 10.1021/ml300162r] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/07/2012] [Indexed: 01/04/2023] Open
Abstract
We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC6 in cultured Jurkat cells. Compared to the natural product apicidin (1), one inhibitor (compound 10) showed equivalent potency against K-562 cells, but was more cytoselective across a panel of cancer cell lines.
Collapse
Affiliation(s)
- Christian A. Olsen
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| | - Ana Montero
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| | - Luke J. Leman
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| | - M. Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| |
Collapse
|
15
|
Auzzas L, Larsson A, Matera R, Baraldi A, Deschênes-Simard B, Giannini G, Cabri W, Battistuzzi G, Gallo G, Ciacci A, Vesci L, Pisano C, Hanessian S. Non-Natural Macrocyclic Inhibitors of Histone Deacetylases: Design, Synthesis, and Activity. J Med Chem 2010; 53:8387-99. [DOI: 10.1021/jm101092u] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Luciana Auzzas
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC, H3C 3J7 Canada
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Andreas Larsson
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC, H3C 3J7 Canada
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Riccardo Matera
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC, H3C 3J7 Canada
| | - Annamaria Baraldi
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC, H3C 3J7 Canada
| | - Benoît Deschênes-Simard
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC, H3C 3J7 Canada
| | - Giuseppe Giannini
- Sigma-Tau Research and Development, Via Pontina Km 30.400, 00040 Pomezia, Roma, Italy
| | - Walter Cabri
- Sigma-Tau Research and Development, Via Pontina Km 30.400, 00040 Pomezia, Roma, Italy
| | | | - Grazia Gallo
- Sigma-Tau Research and Development, Via Pontina Km 30.400, 00040 Pomezia, Roma, Italy
| | - Andrea Ciacci
- Sigma-Tau Research and Development, Via Pontina Km 30.400, 00040 Pomezia, Roma, Italy
| | - Loredana Vesci
- Sigma-Tau Research and Development, Via Pontina Km 30.400, 00040 Pomezia, Roma, Italy
| | - Claudio Pisano
- Sigma-Tau Research and Development, Via Pontina Km 30.400, 00040 Pomezia, Roma, Italy
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, QC, H3C 3J7 Canada
| |
Collapse
|
16
|
Olsen CA, Ghadiri MR. Discovery of potent and selective histone deacetylase inhibitors via focused combinatorial libraries of cyclic alpha3beta-tetrapeptides. J Med Chem 2009; 52:7836-46. [PMID: 19705846 DOI: 10.1021/jm900850t] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful tools in understanding epigenetic regulation and have proven especially promising for the treatment of various cancers, but the discovery of potent, isoform-selective HDAC inhibitors has been a major challenge. We recently developed a cyclic alpha(3)beta-tetrapeptide scaffold for the preparation of HDAC inhibitors with novel selectivity profiles ( J. Am. Chem. Soc. 2009 , 131 , 3033 ). In this study, we elaborate this scaffold with respect to side chain diversity by synthesizing one-bead-one-compound combinatorial libraries of cyclic tetrapeptide analogues and applying two generations of these focused libraries to the discovery of potent HDAC ligands using a convenient screening platform. Our studies led to the first HDAC6-selective cyclic tetrapeptide analogue, which extends the use of cyclic tetrapeptides to the class II HDAC isoforms. These findings highlight the persistent potential of cyclic tetrapeptides as epigenetic modulators and possible anticancer drug lead compounds.
Collapse
Affiliation(s)
- Christian A Olsen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
17
|
Horne W, Olsen C, Beierle J, Montero A, Ghadiri M. Probing the Bioactive Conformation of an Archetypal Natural Product HDAC Inhibitor with Conformationally Homogeneous Triazole‐Modified Cyclic Tetrapeptides. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805900] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
18
|
Montero A, Beierle JM, Olsen CA, Ghadiri MR. Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic alpha/beta-tetrapeptide architectures. J Am Chem Soc 2009; 131:3033-41. [PMID: 19239270 PMCID: PMC2751792 DOI: 10.1021/ja809508f] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes found in bacteria, fungi, plants, and animals that profoundly affect cellular function by catalyzing the removal of acetyl groups from -N-acetylated lysine residues of various protein substrates including histones, transcription factors, alpha-tubulin, and nuclear importers. Although the precise roles of HDAC isoforms in cellular function are not yet completely understood, inhibition of HDAC activity has emerged as a promising approach for reversing the aberrant epigenetic states associated with cancer and other chronic diseases. Potent new isoform-selective HDAC inhibitors would therefore help expand our understanding of the HDAC enzymes and represent attractive lead compounds for drug design, especially if combined with high-resolution structural analyses of such inhibitors to shed light on the three-dimensional pharmacophoric features necessary for the future design of more potent and selective compounds. Here we present structural and functional analyses of a series of beta-amino-acid-containing HDAC inhibitors inspired by cyclic tetrapeptide natural products. To survey a diverse ensemble of pharmacophoric configurations, we systematically varied the position of the beta-amino acid, amino acid chirality, functionalization of the Zn(2+)-coordinating amino acid side chain, and alkylation of the backbone amide nitrogen atoms around the macrocycle. In many cases, the compounds were a single conformation in solution and exhibited potent activities against a number of HDAC isoforms as well as effective antiproliferative and cytotoxic activities against human tumor cells. High-resolution NMR solution structures were determined for a selection of the inhibitors, providing a useful means of correlating detailed structural information with potency. The structure-based approach described here is expected to furnish valuable insights toward the future design of more selective HDAC inhibitors.
Collapse
Affiliation(s)
- Ana Montero
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - John M. Beierle
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Christian A. Olsen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - M. Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
19
|
Horne WS, Olsen CA, Beierle JM, Montero A, Reza Ghadiri M. Probing the bioactive conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous triazole-modified cyclic tetrapeptides. Angew Chem Int Ed Engl 2009; 48:4718-24. [PMID: 19267380 PMCID: PMC3041267 DOI: 10.1002/anie.200805900] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fooling enzymes with mock amides: Analogues of apicidin, a cyclic-tetrapeptide inhibitor of histone deacetylase (HDAC), were designed with a 1,4- or 1,5-disubstituted 1,2,3-triazole in place of a backbone amide bond to fix the bond in question in either a trans-like or a cis-like configuration. Thus, the binding affinity of distinct peptide conformations (see picture) could be probed. One analogue proved in some cases to be superior to apicidin as an HDAC inhibitor.
Collapse
Affiliation(s)
| | | | - John M. Beierle
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Ana Montero
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - M. Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|