1
|
Jeganathan S, Budziszewski E, Bielecki P, Kolios MC, Exner AA. In situ forming implants exposed to ultrasound enhance therapeutic efficacy in subcutaneous murine tumors. J Control Release 2020; 324:146-155. [PMID: 32389777 PMCID: PMC7725358 DOI: 10.1016/j.jconrel.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022]
Abstract
In situ forming implants (ISFIs) allow for a high initial intratumoral concentration and sustained release of the chemotherapeutic. However, clinical translation is impeded primarily due to limited drug penetration from the tumor/boundary interface and poor intratumoral drug retention. Therapeutic ultrasound (TUS) has become a popular approach for improving drug penetration of transdermal devices and increasing cellular uptake of nanoparticles. These effects are driven by the mechanical and thermal bioeffects associated with TUS. In this study, we characterize the released drug penetration, retention, and overall therapeutic response when exposing ISFI to the combination of the mechanical and thermal effects of TUS (C-TUS). ISFIs were intratumorally injected into subcutaneous murine tumors then exposed to C-TUS (exposure: 5 min, duty factor: 0.33, frequency: 3 MHz, intensity: 2.2 W/cm2, pulse duration: 2 ms, pulse repetition frequency: 165 Hz, effective radiating area: 5 cm2, energy delivered: 896 J, time average intensity: 0.88 W/cm2). Tumors treated with the combination of ISFI + C-TUS demonstrated a 2.5-fold increase in maximum drug penetration and a 3-fold increase in drug retention at 5- and 8-days post-injection, respectively, compared to ISFIs without TUS exposure. These improvements in drug penetration and retention translated into an enhanced therapeutic response. Mice treated with ISFI + C-TUS showed a 62.6% reduction in tumor progression, a 50.0% increase in median survival time, and a 26.6% increase in necrotic percentage compared to ISFIs without TUS exposure. Combining intratumoral ISFIs with TUS may be beneficial for addressing some long-standing challenges with local drug delivery in cancer treatment and may serve as a viable noninvasive method to improve the poor clinical success of local drug delivery systems.
Collapse
Affiliation(s)
- Selva Jeganathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Emily Budziszewski
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Peter Bielecki
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Department of Radiology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
2
|
Zn 2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils. Sci Rep 2018; 8:11280. [PMID: 30050082 PMCID: PMC6062538 DOI: 10.1038/s41598-018-29529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022] Open
Abstract
A synthetic derivative, GnRH [6-D-Phe], stable against enzymatic degradation, self-assembles and forms nanostructures and fibrils upon a pH shift in the presence of different concentrations of Zn2+in vitro. Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR–FTIR) revealed the existence of higher order assembly of Zn2+: GnRH [6-D-Phe]. Nuclear Magnetic Resonance spectroscopy (NMR) indicated a weak interaction between Zn2+ and GnRH [6-D-Phe]. Atomic Force Microscopy (AFM) showed the existence of GnRH [6-D-Phe] oligomers and fibrils. Molecular Dynamic (MD) simulation of the 10:1 Zn2+: GnRH [6-D-Phe] explored the interaction and dimerization processes. In contrast to already existing short peptide fibrils, GnRH [6-D-Phe] nanostructures and fibrils form in a Tris-buffered pH environment in a controlled manner through a temperature reduction and a pH shift. The lyophilized Zn2+: GnRH [6-D-Phe] assembly was tested as a platform for the sustained delivery of GnRH [6-D-Phe] and incorporated into two different oil vehicle matrices. The in vitro release was slow and continuous over 14 days and not influenced by the oil matrix.
Collapse
|
3
|
Abstract
Most diseases and disorders of the brain require long-term therapy and a constant supply of drugs. Implantable drug-delivery systems provide long-term, sustained drug delivery in the brain. The present review discusses different type of implantable systems such as solid implants, in situ forming implants, in situ forming microparticles, depot formulations, polymeric-lipid implants, sucrose acetate isobutyrate and N-stearoyl L-alanine methyl ester systems for continuous drug delivery into brain for various brain diseases including glioblastomas, medulloblastoma, epilepsy, stroke, schizophrenia and Alzheimer's diseases. Implantable neural probes and microelectrode array systems for brain are also discussed in brief.
Collapse
|
4
|
Solorio L, Exner AA. Effect of the Subcutaneous Environment on Phase-Sensitive In Situ-Forming Implant Drug Release, Degradation, and Microstructure. J Pharm Sci 2015; 104:4322-4328. [PMID: 26506522 DOI: 10.1002/jps.24673] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/14/2015] [Indexed: 11/11/2022]
Abstract
In situ-forming implants are a promising platform used for the release of therapeutic agents. Significant changes in behavior occur when the implants are used in vivo relative to implants formed in vitro. To understand how the injection site effects implant behavior, poly(lactic-co-glycolic acid) implants were examined after injection in the subcutaneous space of a Sprague-Dawley rat model to determine how the environment altered implant erosion, degradation, swelling, microstructure, and mock drug release. Changes in implant microstructure occurred over time for implants formed in vivo, where it was observed that the porosity was lost over the course of 5 days. Implants formed in vivo had a significantly greater burst release (p < 0.05) relative to implants formed in vitro. However, during the diffusion period of release, implants formed in vitro had a significantly higher daily release (2.1%/day, p < 0.05), which correlated to changes in implant microstructure. Additionally, implants formed in vitro had a two-fold increase in the first-order degradation kinetics relative to the implants formed in vivo. These findings suggest that the changes in implant behavior occur as a result of changes in the implant microstructure induced by the external environment.
Collapse
Affiliation(s)
- Luis Solorio
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Agata A Exner
- Case Center for Imaging Research, Department of Radiology, Cleveland, Ohio 44106; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
5
|
An injectable liquid crystal system for sustained delivery of entecavir. Int J Pharm 2015; 490:265-72. [PMID: 26004002 DOI: 10.1016/j.ijpharm.2015.05.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
Liquid crystal (LC) technology has attracted much interest for new injectable sustained-release (SR) formulations. In this study, an injectable liquid crystal-forming system (LCFS) including entecavir was prepared for the treatment of hepatitis B. In particular, an anchoring effect was introduced because LCFSs are relatively hydrophobic while entecavir is a slightly charged drug. The physicochemical properties of LCFSs were investigated by cryo-transmission electron microscopy (cryo-TEM), polarized optical microscopy, and small-angle X-ray scattering (SAXS), showing typical characteristics of the liquid crystalline phase, which was classified as the hexagonal phase. A pharmacokinetic study in rats showed sustained release of entecavir for 3-5 days with a basic LCFS formulation composed of sorbitan monooleate (SMO), phosphatidyl choline (PC), and tocopherol acetate (TA) as the main LC components. 1,2-Dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA), an anionic phospholipid, was added to increase the anchoring effect between the cationic entecavir and the anionic DPPA, which resulted in a 1.5-times increase in half-life in rats. In addition, anchoring was strengthened by optimizing the pH to 2.5-4.5, increasing the half-life in the rat and dog. Also, due to the increasing terminal half-life from rat to dog resulting from species differences, LCFS produced one week delivery of entecavir in rat and two weeks delivery in dog. Therefore, LCFS injection using the anchoring effect for entecavir can potentially be used to deliver the drug over more than 2 weeks or even 1 month for the treatment of hepatitis B.
Collapse
|
6
|
Rahimi M, Mobedi H, Behnamghader A. Aqueous stability of leuprolide acetate: effect of temperature, dissolved oxygen, pH and complexation with β-cyclodextrin. Pharm Dev Technol 2014; 21:108-15. [PMID: 25331295 DOI: 10.3109/10837450.2014.971377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present research, the aqueous stability of leuprolide acetate (LA) in phosphate buffered saline (PBS) medium was studied (pH = 2.0-7.4). For this purpose, the effect of temperature, dissolved oxygen and pH on the stability of LA during 35 days was investigated. Results showed that the aqueous stability of LA was higher at low temperatures. Degassing of the PBS medium partially increased the stability of LA at 4 °C, while did not change at 37 °C. The degradation of LA was accelerated at lower pH values. In addition, complexes of LA with different portions of β-cyclodextrin (β-CD) were prepared through freeze-drying procedure and characterized by Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses. Studying their aqueous stability at various pH values (2.0-7.4) showed LA/β-CD complexes exhibited higher stability when compared with LA at all pH values. The stability of complexes was also improved by increasing the portion of LA/β-CD up to 1/10.
Collapse
Affiliation(s)
- Mehdi Rahimi
- a Department of Biomedical Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Hamid Mobedi
- b Department of Novel Drug Delivery Systems , Iran Polymer and Petrochemical Institute , Tehran , Iran , and
| | | |
Collapse
|
7
|
Ki MH, Lim JL, Ko JY, Park SH, Kim JE, Cho HJ, Park ES, Kim DD. A new injectable liquid crystal system for one month delivery of leuprolide. J Control Release 2014; 185:62-70. [DOI: 10.1016/j.jconrel.2014.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/11/2014] [Accepted: 04/19/2014] [Indexed: 01/03/2023]
|
8
|
Abstract
Proteins constitute an increasing proportion of the drugs in development. The barriers to their entry into the blood stream and rapid clearance means that they often have to be injected several times a day, affecting patient compliance. This paper reviews the major technologies enabling the development of injectable sustained-release products and formulation strategies to maintain protein integrity and modify release rates. Whilst many injectable sustained-release products are on the market, these are all delivering small molecular weight drugs and peptides. This is due to the manufacturing processes that denature and degrade the proteins upon encapsulation and release into the body. Formulation strategies are discussed and a number of new technologies reviewed that are able to overcome the issues with conventional manufacturing processes. The reliance of many processes on organic solvents has prevented their application to the development of injectable sustained release protein products. The development of entirely solvent free and aqueous methods of manufacture of these products has meant that numerous sustained-release protein products are close to reaching the market.
Collapse
|
9
|
Wadee A, Pillay V, Choonara YE, du Toit LC, Penny C, Ndesendo VMK, Kumar P, Murphy CS. Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors. Expert Opin Drug Deliv 2011; 8:1323-40. [DOI: 10.1517/17425247.2011.602671] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Solorio L, Babin BM, Patel RB, Mach J, Azar N, Exner AA. Noninvasive characterization of in situ forming implants using diagnostic ultrasound. J Control Release 2010; 143:183-90. [PMID: 20060859 DOI: 10.1016/j.jconrel.2010.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 10/20/2022]
Abstract
In situ forming drug delivery systems provide a means by which a controlled release depot can be physically inserted into a target site without the use of surgery. The release rate of drugs from these systems is often related to the rate of implant formation. Currently, only a limited number of techniques are available to monitor phase inversion, and none of these methods can be used to visualize the process directly and noninvasively. In this study, diagnostic ultrasound was used to visualize and quantify the process of implant formation in a phase inversion based system both in vitro and in vivo. Concurrently, sodium fluorescein was used as a mock drug to evaluate the drug release profiles and correlate drug release and implant formation processes. Implants comprised of three different molecular weight poly(lactic-co-glycolic acid) (PLGA) polymers dissolved in 1-methyl-2-pyrrolidinone (NMP) were studied in vitro and a 29 kDa PLGA solution was evaluated in vivo. The implants were encapsulated in a 1% agarose tissue phantom for five days, or injected into a rat subcutaneously and evaluated for 48 h. Quantitative measurements of the gray-scale value (corresponding to the rate of implant formation), swelling, and precipitation were evaluated using image analysis techniques, showing that polymer molecular weight has a considerable effect on the swelling and formation of the in situ drug delivery depots. A linear correlation was also seen between the in vivo release and depot formation (R(2)=0.93). This study demonstrates, for the first time, that ultrasound can be used to noninvasively and nondestructively monitor and evaluate the phase inversion process of in situ forming drug delivery implants, and that the formation process can be directly related to the initial phase of drug release dependent on this formation.
Collapse
Affiliation(s)
- Luis Solorio
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|