1
|
Kolben Y, Azmanov H, Gelman R, Dror D, Ilan Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann Med 2023; 55:311-318. [PMID: 36594558 PMCID: PMC9815249 DOI: 10.1080/07853890.2022.2163053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents. Numerous methods are used to overcome this problem with moderate success. Besides efforts of antimicrobial stewards, several artificial intelligence (AI)-based technologies are being explored for preventing resistance development. These first-generation systems mainly focus on improving patients' adherence. Chronobiology is inherent in all biological systems. Host response to infections and pathogens activity are assumed to be affected by the circadian clock. This paper describes the problem of antimicrobial resistance and reviews some of the current AI technologies. We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance. An algorithm-controlled regimen that improves the long-term effectiveness of antimicrobial agents is being developed based on the implementation of variability in dosing and drug administration times. The method provides a means for ensuring a sustainable response and improved outcomes. Ongoing clinical trials determine the effectiveness of this second-generation system in chronic infections. Data from these studies are expected to shed light on a new aspect of resistance mechanisms and suggest methods for overcoming them.IMPORTANCE SECTIONThe paper presents the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.Key messagesAntimicrobial resistance results from the widespread use of antimicrobial agents and is a significant obstacle to the effectiveness of these agents.We present the establishment of a second-generation AI chronobiology-based approach to help in preventing further resistance and possibly overcome existing resistance.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Henny Azmanov
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Ram Gelman
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Danna Dror
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Faculty of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
2
|
Feder AF, Harper KN, Brumme CJ, Pennings PS. Understanding patterns of HIV multi-drug resistance through models of temporal and spatial drug heterogeneity. eLife 2021; 10:e69032. [PMID: 34473060 PMCID: PMC8412921 DOI: 10.7554/elife.69032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
Triple-drug therapies have transformed HIV from a fatal condition to a chronic one. These therapies should prevent HIV drug resistance evolution, because one or more drugs suppress any partially resistant viruses. In practice, such therapies drastically reduced, but did not eliminate, resistance evolution. In this article, we reanalyze published data from an evolutionary perspective and demonstrate several intriguing patterns about HIV resistance evolution - resistance evolves (1) even after years on successful therapy, (2) sequentially, often via one mutation at a time and (3) in a partially predictable order. We describe how these observations might emerge under two models of HIV drugs varying in space or time. Despite decades of work in this area, much opportunity remains to create models with realistic parameters for three drugs, and to match model outcomes to resistance rates and genetic patterns from individuals on triple-drug therapy. Further, lessons from HIV may inform other systems.
Collapse
Affiliation(s)
- Alison F Feder
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Kristin N Harper
- Harper Health and Science Communications, LLCSeattleUnited States
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDSVancouverCanada
- Department of Medicine, University of British ColumbiaVancouverCanada
| | - Pleuni S Pennings
- Department of Biology, San Francisco State UniversitySan FranciscoUnited States
| |
Collapse
|
3
|
Flexner C, Owen A, Siccardi M, Swindells S. Long-acting drugs and formulations for the treatment and prevention of HIV infection. Int J Antimicrob Agents 2020; 57:106220. [PMID: 33166693 DOI: 10.1016/j.ijantimicag.2020.106220] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/02/2020] [Accepted: 11/01/2020] [Indexed: 01/09/2023]
Abstract
Long-acting and extended-release formulations represent one of the most important approaches to improving the treatment and prevention of chronic HIV infection. Long-acting small molecules and monoclonal antibodies have demonstrated potent anti-HIV activity in early- and late-stage clinical trials. Strategies to manage toxicity and falling drug concentrations after missed doses, as well as primary and secondary resistance to current drugs and monoclonal antibodies are important considerations. Long-acting injectable nanoformulations of the integrase inhibitor cabotegravir and the non-nucleoside reverse transcriptase inhibitor rilpivirine were safe, well tolerated and efficacious in large randomised phase 3 studies. Regulatory approval for this two-drug combination for HIV maintenance therapy was granted in Canada in 2020 and is expected in the USA during 2021. 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (islatravir) is a novel nucleoside reverse transcriptase inhibitor in clinical development as a long-acting oral drug and as a long-acting subcutaneous polymer implant. GS-6207 is a novel HIV capsid inhibitor that is injected subcutaneously every 3 months. Broadly-neutralising monoclonal antibodies have potent antiviral activity in early human trials, however there is substantial baseline resistance and rapid development of resistance to these antibodies if used as monotherapy. Limitations of these antiretroviral approaches include management of toxicities and prevention of drug resistance when these drugs are discontinued and drug concentrations are slowly reduced over time. These approaches appear to be especially attractive for patients complaining of pill fatigue and for those experiencing HIV-associated stigma. As these formulations are shown to be safe, well tolerated and economical, they are likely to gain broader appeal.
Collapse
Affiliation(s)
- Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, School of Medicine and Bloomberg School of Public Health, Johns Hopkins University, Osler 525, 600 N. Wolfe Street, Baltimore, MD 21287-5554, USA.
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Centre of Excellence in Long Acting Therapeutics (CELT), University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, Centre of Excellence in Long Acting Therapeutics (CELT), University of Liverpool, Liverpool, UK
| | | |
Collapse
|
4
|
Dual antiretroviral therapies are effective and safe regimens in the central nervous system of neurologically symptomatic people living with HIV. AIDS 2020; 34:1899-1906. [PMID: 32701580 DOI: 10.1097/qad.0000000000002601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Aim of this study was to compare cerebrospinal fluid (CSF) virological control, biomarkers and neurocognition of neurologically symptomatic patients on dual antiretroviral therapies (dual therapy) vs. 2 nucleoside reverse transcriptase inhibitors-based three-drug regimens (triple therapy). DESIGN Retrospective monocentric cross-sectional study. METHODS We analysed data from people living with HIV undergoing lumbar puncture for clinical/research reasons with plasma HIV-RNA less than 200 copies/ml and neurological/neurocognitive symptoms without significant contributing comorbidities. We measured CSF HIV-RNA, inflammation, blood-brain barrier integrity, neuronal damage and astrocytosis biomarkers (five biomarkers by ELISA and five indices by immunoturbidimetry) and recorded the neurocognitive performance (14 tests). CSF escape was defined as any case of CSF HIV-RNA 0.5 Log10 higher than viraemia or any case of detectable CSF HIV-RNA coupled with undetectable viraemia. RESULTS A total of 78 patients on triple therapy and 19 on dual therapy were included. Overall, 75.3% male, median age 51 years (46-58), current CD4 count 545 cells/μl (349-735), time on current regimens 18 months (8-29), but length of plasma suppression 32 months (14-94). The two groups did not differ in terms of HIV-associated neurological diagnoses, demographic and viro-immunological features. Undetectable CSF HIV-RNA (73.7% in dual therapy vs. 78.2% in triple therapy, p.67) and CSF escape (21.1% in dual therapy vs. 19.2% in triple therapy, p.86) did not differ. No difference was observed in depression, anxiety, neurocognition (in 63 participants) nor in any tested biomarker. CONCLUSION In people living with HIV with neurological/neurocognitive symptoms, peripherally effective dual therapy can show CSF virosuppression, inflammation, neuronal and astrocyte integrity and neurocognition comparable to triple therapy.
Collapse
|
5
|
Gantner P, Lee GQ, Rey D, Mesplede T, Partisani M, Cheneau C, Beck-Wirth G, Faller JP, Mohseni-Zadeh M, Martinot M, Wainberg MA, Fafi-Kremer S. Dolutegravir reshapes the genetic diversity of HIV-1 reservoirs. J Antimicrob Chemother 2019; 73:1045-1053. [PMID: 29244129 DOI: 10.1093/jac/dkx475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Better understanding of the dynamics of HIV reservoirs under ART is a critical step to achieve a functional HIV cure. Our objective was to assess the genetic diversity of archived HIV-1 DNA over 48 weeks in blood cells of individuals starting treatment with a dolutegravir-based regimen. Methods Eighty blood samples were prospectively and longitudinally collected from 20 individuals (NCT02557997) including: acutely (n = 5) and chronically (n = 5) infected treatment-naive individuals, as well as treatment-experienced individuals who switched to a dolutegravir-based regimen and were either virologically suppressed (n = 5) or had experienced treatment failure (n = 5). The integrase and V3 loop regions of HIV-1 DNA isolated from PBMCs were analysed by pyrosequencing at baseline and weeks 4, 24 and 48. HIV-1 genetic diversity was calculated using Shannon entropy. Results All individuals achieved or maintained viral suppression throughout the study. A low and stable genetic diversity of archived HIV quasispecies was observed in individuals starting treatment during acute infection. A dramatic reduction of the genetic diversity was observed at week 4 of treatment in the other individuals. In these patients and despite virological suppression, a recovery of the genetic diversity of the reservoirs was observed up to 48 weeks. Viral variants bearing dolutegravir resistance-associated substitutions at integrase position 50, 124, 230 or 263 were detected in five individuals (n = 5/20, 25%) from all groups except those who were ART-failing at baseline. None of these substitutions led to virological failure. Conclusions These data demonstrate that the genetic diversity of the HIV-1 reservoir is reshaped following the initiation of a dolutegravir-based regimen and strongly suggest that HIV-1 can continue to replicate despite successful treatment.
Collapse
Affiliation(s)
- Pierre Gantner
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| | - Guinevere Q Lee
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Rey
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Marialuisa Partisani
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Christine Cheneau
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Geneviève Beck-Wirth
- Internal Medicine Department, HIV-infection care center, GHR Mulhouse Sud Alsace, Mulhouse, France
| | - Jean-Pierre Faller
- Department of Infectious Diseases, Hôpital Nord Franche Comté, Belfort, France
| | - Mahsa Mohseni-Zadeh
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Martin Martinot
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| |
Collapse
|
6
|
Hill AL, Rosenbloom DIS, Nowak MA, Siliciano RF. Insight into treatment of HIV infection from viral dynamics models. Immunol Rev 2018; 285:9-25. [PMID: 30129208 PMCID: PMC6155466 DOI: 10.1111/imr.12698] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The odds of living a long and healthy life with HIV infection have dramatically improved with the advent of combination antiretroviral therapy. Along with the early development and clinical trials of these drugs, and new field of research emerged called viral dynamics, which uses mathematical models to interpret and predict the time-course of viral levels during infection and how they are altered by treatment. In this review, we summarize the contributions that virus dynamics models have made to understanding the pathophysiology of infection and to designing effective therapies. This includes studies of the multiphasic decay of viral load when antiretroviral therapy is given, the evolution of drug resistance, the long-term persistence latently infected cells, and the rebound of viremia when drugs are stopped. We additionally discuss new work applying viral dynamics models to new classes of investigational treatment for HIV, including latency-reversing agents and immunotherapy.
Collapse
Affiliation(s)
- Alison L. Hill
- Program for Evolutionary DynamicsHarvard UniversityCambridgeMassachusetts
| | - Daniel I. S. Rosenbloom
- Department of PharmacokineticsPharmacodynamics, & Drug MetabolismMerck Research LaboratoriesKenilworthNew Jersey
| | - Martin A. Nowak
- Program for Evolutionary DynamicsHarvard UniversityCambridgeMassachusetts
| | - Robert F. Siliciano
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
- Howard Hughes Medical InstituteBaltimoreMaryland
| |
Collapse
|
7
|
Exploring an alternative explanation for the second phase of viral decay: Infection of short-lived cells in a drug-limited compartment during HAART. PLoS One 2018; 13:e0198090. [PMID: 30016329 PMCID: PMC6049925 DOI: 10.1371/journal.pone.0198090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Most HIV-infected patients who initiate combination antiretroviral therapy experience a viral load decline in several phases. These phases are characterized by different rates of viral load decay that decrease when transitioning from one phase to the next. There is no consensus as to the origin of these phases. One hypothesis put forward is that short- and long-lived infected cells are responsible for the first and second phases of decay, respectively. However, significant differences in drug concentrations are observed in monocytes from various tissues, suggesting the first two phases of decay in viral loads could instead be attributed to short-lived cells being differently exposed to drugs. Compared to a well-exposed compartment, new cell infection can be expected in a compartment with limited drug exposure, thus leading to a slower viral load decay with potential virologic failure and drug resistance. In the current study, the latter hypothesis was investigated using a model of viral kinetics. Empirical datasets were involved in model elaboration and parameter estimation. In particular, susceptibility assay data was used for an in vitro to in vivo extrapolation based on the expected drug concentrations inside physiological compartments. Results from numerical experiments of the short-term evolution of viral loads can reproduce the first two phases of viral decay when allowing new short-lived cell infections in an unidentified drug-limited compartment. Model long-term predictions are however less consistent with clinical observations. For the hypothesis to hold, efavirenz, tenofovir and emtricitabine drug exposure in the drug-limited compartment would have to be very low compared to exposure in peripheral blood. This would lead to significant long-term viral growth and the frequent development of resistant strains, a prediction not supported by clinical observations. This suggests that the existence of a drug-limited anatomical compartment is unlikely, by itself, to explain the second phase of viral load decay.
Collapse
|
8
|
Landry S, Chen CN, Patel N, Tseng A, Lalonde RG, Thibeault D, Sanche S, Sheehan NL. Therapeutic drug monitoring in treatment-experienced HIV-infected patients receiving darunavir-based salvage regimens: A case series. Antiviral Res 2018; 152:111-116. [PMID: 29458132 DOI: 10.1016/j.antiviral.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Therapeutic drug monitoring (TDM) constitutes a compelling approach for the optimization of antiretroviral therapy in treatment-experienced HIV-1 patients. While various inhibitory indices have been proposed to predict virologic outcome, there is a lack of consensus on the clinical value of TDM. Here, we report the comparative results of TDM in 14 HIV-1-infected patients who had previously received at least two different PI-based regimens and who initiated darunavir (DRV)-based salvage therapy. Pharmacokinetic/pharmacodynamics (PK/PD) parameters were calculated for each subject. Seventy-nine percent of subjects had a viral load <50 copies/mL at 48 weeks. The only subject with two consecutive viral loads >50 copies/mL at the end of the study period was the patient with the lowest instantaneous inhibitory potential (IIP). The sample size was insufficient to show an association between any of the PK/PD parameters and virologic response. Based on our observations, we suggest that the utility of IIP for antiretroviral combinations for the prediction of virologic outcome in HIV-1 drug-experienced patients should be studied further.
Collapse
Affiliation(s)
- Sébastien Landry
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada; Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada
| | - Chi-Nan Chen
- Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada
| | - Nimish Patel
- Department of Pharmacy Practice, Albany College of Pharmacy & Health Sciences, 106 New Scotland Avenue, Albany, NY, 12208, USA
| | - Alice Tseng
- Immunodeficiency Clinic, University Health Network, 585 University Avenue, Toronto, ON, M5G 2N2, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Richard G Lalonde
- Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada
| | - Denis Thibeault
- Biochemistry Laboratory, McGill University Health Center, 1001 boul. Décarie, E04.1510, Montréal, Québec, H4A 3J1, Canada
| | - Steven Sanche
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Nancy L Sheehan
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada; Chronic Viral Illness Service, McGill University Health Centre, 1001 boulevard Décarie, D02.4110, Montréal, Québec, H4A 3J1, Canada; Pharmacy Department, McGill University Health Centre, 1001 boulevard Décarie, CRC.6004, Montréal, Québec, H4A 3J1, Canada.
| |
Collapse
|