1
|
Zhang J, Takeda K, Takeuchi M, Komatsu K, Zhu J, Yamaguchi Y. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Pharm Stat 2024. [PMID: 39551616 DOI: 10.1002/pst.2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.
Collapse
Affiliation(s)
- Jun Zhang
- Data Science, Astellas Pharma China, Beijing, China
| | - Kentaro Takeda
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Masato Takeuchi
- Early Development New Technologies, Astellas Pharma Inc, Tokyo, Japan
| | - Kanji Komatsu
- Early Development New Technologies, Astellas Pharma Inc, Tokyo, Japan
| | - Jing Zhu
- Data Science, Astellas Pharma China, Beijing, China
| | - Yusuke Yamaguchi
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| |
Collapse
|
2
|
Xia Q, Takeda K, Yamaguchi Y, Zhang J. A generalized Bayesian optimal interval design for dose optimization in immunotherapy. Pharm Stat 2024; 23:480-494. [PMID: 38295856 DOI: 10.1002/pst.2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 07/13/2024]
Abstract
For novel immuno-oncology therapies, the primary purpose of a dose-finding trial is to identify an optimal dose (OD), defined as the tolerable dose having adequate efficacy and immune response under the unpredictable dose-outcome (toxicity, efficacy, and immune response) relationships. In addition, the multiple low or moderate-grade toxicities rather than dose-limiting toxicities (DLTs) and multiple levels of efficacy should be evaluated differently in dose-finding to determine true OD for developing novel immuno-oncology therapies. We proposed a generalized Bayesian optimal interval design for immunotherapy, simultaneously considering efficacy and toxicity grades and immune response outcomes. The proposed design, named gBOIN-ETI design, is model-assisted and easy to implement to develop immunotherapy efficiently. The operating characteristics of the gBOIN-ETI are compared with other dose-finding trial designs in oncology by simulation across various realistic settings. Our simulations show that the gBOIN-ETI design could outperform the other available approaches in terms of both the percentage of correct OD selection and the average number of patients allocated to the OD across various realistic trial settings.
Collapse
Affiliation(s)
- Qing Xia
- Global Biostatistics Science, Amgen Inc, Camarillo, California, USA
| | - Kentaro Takeda
- Data Science, Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | - Yusuke Yamaguchi
- Data Science, Astellas Pharma Global Development, Inc, Northbrook, Illinois, USA
| | - Jun Zhang
- Data Science, Astellas Pharma China, Beijing, China
| |
Collapse
|
3
|
Kakizume T, Takeda K, Taguri M, Morita S. BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations. Stat Methods Med Res 2024; 33:716-727. [PMID: 38444354 DOI: 10.1177/09622802241236936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
One of the primary objectives of a dose-finding trial for novel anti-cancer agent combination therapies, such as molecular targeted agents and immune-oncology therapies, is to identify optimal dose combinations that are tolerable and therapeutically beneficial for subjects in subsequent clinical trials. The goal differs from that of a dose-finding trial for traditional cytotoxic agents, in which the goal is to determine the maximum tolerated dose combinations. This paper proposes the new design, named 'BOIN-ETC' design, to identify optimal dose combinations based on both efficacy and toxicity outcomes using the waterfall approach. The BOIN-ETC design is model-assisted, so it is expected to be robust, and straightforward to implement in actual oncology dose-finding trials. These characteristics are quite valuable from a practical perspective. Simulation studies show that the BOIN-ETC design has advantages compared with the other approaches in the percentage of correct optimal dose combination selection and the average number of patients allocated to the optimal dose combinations across various realistic settings.
Collapse
|
4
|
Takeda K, Zhu J, Li R, Yamaguchi Y. A Bayesian optimal interval design for dose optimization with a randomization scheme based on pharmacokinetics outcomes in oncology. Pharm Stat 2023; 22:1104-1115. [PMID: 37545018 DOI: 10.1002/pst.2332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
The primary objective of an oncology dose-finding trial for novel therapies, such as molecularly targeted agents and immune-oncology therapies, is to identify the optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. Pharmacokinetic (PK) information is considered an appropriate indicator for evaluating the level of drug intervention in humans from a pharmacological perspective. Several novel anticancer agents have been shown to have significant exposure-efficacy relationships, and some PK information has been considered an important predictor of efficacy. This paper proposes a Bayesian optimal interval design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients allocated to OD in various realistic settings.
Collapse
Affiliation(s)
- Kentaro Takeda
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Jing Zhu
- Data Science, Astellas Pharma China, Beijing, China
| | - Ran Li
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Yusuke Yamaguchi
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| |
Collapse
|
5
|
Takeda K, Yamaguchi Y, Taguri M, Morita S. TITE-gBOIN-ET: Time-to-event generalized Bayesian optimal interval design to accelerate dose-finding accounting for ordinal graded efficacy and toxicity outcomes. Biom J 2023; 65:e2200265. [PMID: 37309248 DOI: 10.1002/bimj.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
One of the primary objectives of an oncology dose-finding trial for novel therapies, such as molecular-targeted agents and immune-oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low or moderate-grade toxicities than dose-limiting toxicities. Besides, for efficacy, evaluating the overall response and long-term stable disease in solid tumors and considering the difference between complete remission and partial remission in lymphoma are preferable. It is also essential to accelerate early-stage trials to shorten the entire period of drug development. However, it is often challenging to make real-time adaptive decisions due to late-onset outcomes, fast accrual rates, and differences in outcome evaluation periods for efficacy and toxicity. To solve the issues, we propose a time-to-event generalized Bayesian optimal interval design to accelerate dose finding, accounting for efficacy and toxicity grades. The new design named "TITE-gBOIN-ET" design is model-assisted and straightforward to implement in actual oncology dose-finding trials. Simulation studies show that the TITE-gBOIN-ET design significantly shortens the trial duration compared with the designs without sequential enrollment while having comparable or higher performance in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.
Collapse
Affiliation(s)
- Kentaro Takeda
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Yusuke Yamaguchi
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | - Masataka Taguri
- Department of Health Data Science, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Jin H, Yin G. Time-to-event calibration-free odds design: A robust efficient design for phase I trials with late-onset outcomes. Pharm Stat 2023; 22:773-783. [PMID: 37095681 DOI: 10.1002/pst.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Compared with most of the existing phase I designs, the recently proposed calibration-free odds (CFO) design has been demonstrated to be robust, model-free, and easy to use in practice. However, the original CFO design cannot handle late-onset toxicities, which have been commonly encountered in phase I oncology dose-finding trials with targeted agents or immunotherapies. To account for late-onset outcomes, we extend the CFO design to its time-to-event (TITE) version, which inherits the calibration-free and model-free properties. One salient feature of CFO-type designs is to adopt game theory by competing three doses at a time, including the current dose and the two neighboring doses, while interval-based designs only use the data at the current dose and is thus less efficient. We conduct comprehensive numerical studies for the TITE-CFO design under both fixed and randomly generated scenarios. TITE-CFO shows robust and efficient performances compared with interval-based and model-based counterparts. As a conclusion, the TITE-CFO design provides robust, efficient, and easy-to-use alternatives for phase I trials when the toxicity outcome is late-onset.
Collapse
Affiliation(s)
- Huaqing Jin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Guosheng Yin
- Department of Mathematics, Imperial College London, London, UK
| |
Collapse
|
7
|
Zhang J, Chen X, Li B, Yan F. A comparative study of adaptive trial designs for dose optimization. Pharm Stat 2023; 22:797-814. [PMID: 37156731 DOI: 10.1002/pst.2306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Recently, the US Food and Drug Administration Oncology Center of Excellence initiated Project Optimus to reform the dose optimization and dose selection paradigm in oncology drug development. The agency pointed out that the current paradigm for dose selection-based on the maximum tolerated dose (MTD)-is not sufficient for molecularly targeted therapies and immunotherapies, for which efficacy may not increase after the dose reaches a certain level. In these cases, it is more appropriate to identify the optimal biological dose (OBD) that optimizes the risk-benefit tradeoff of the drug. Project Optimus has spurred tremendous interest and urgent need for guidance on designing dose optimization trials. In this article, we review several representative dose optimization designs, including model-based and model-assisted designs, and compare their operating characteristics based on 10,000 randomly generated scenarios with various dose-toxicity and dose-efficacy curves and some fixed representative scenarios. The results show that, compared with model-based designs, model-assisted methods have advantages of easy-to-implement, robustness, and high accuracy to identify OBD. Some guidance is provided to help biostatisticians and clinicians to choose appropriate dose optimization methods in practice.
Collapse
Affiliation(s)
- Jingyi Zhang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bosheng Li
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Kojima M. Data-dependent early completion of dose-finding trials for drug-combination. Stat Methods Med Res 2023; 32:820-828. [PMID: 36775992 DOI: 10.1177/09622802231155094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
PURPOSE Model-assisted designs for drug combination trials have been proposed as novel designs with simple and superior performance. However, model-assisted designs have the disadvantage that the sample size must be set in advance, and trials cannot be completed until the number of patients treated reaches the pre-set sample size. Model-assisted designs have a stopping rule that can be used to terminate the trial if the number of patients treated exceeds the predetermined number, there is no statistical basis for the predetermined number. Here, I propose two methods for data-dependent early completion of dose-finding trials for drug combination: (1) an early completion method based on dose retainment probability, and (2) an early completion method in which the dose retainment probability is adjusted by a bivariate isotonic regression. METHODS Early completion is determined when the dose retainment probability using both trial data and the number of remaining patients is high. Early completion of a virtual trial was demonstrated. The performances of the early completion methods were evaluated by simulation studies with 12 scenarios. RESULTS The simulation studies showed that the percentage of early completion was an average of approximately 70%, and the number of patients treated was 25% less than the planned sample size. The percentage of correct maximum tolerated dose combination selection for the early completion methods was similar to that of non-early completion methods with an average difference of approximately 3%. CONCLUSION The performance of the proposed early completion methods was similar to that of the non-early completion methods. Furthermore, the number of patients for determining early completion before the trial starts was determined and a program code for calculating the dose retainment probability was proposed.
Collapse
Affiliation(s)
- Masahiro Kojima
- Biometrics Department, R&D Division, 13486Kyowa Kirin Co., Ltd, Tokyo, Japan.,Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
| |
Collapse
|
9
|
Ananthakrishnan R, Lin R, He C, Chen Y, Li D, LaValley M. An overview of the BOIN design and its current extensions for novel early-phase oncology trials. Contemp Clin Trials Commun 2022; 28:100943. [PMID: 35812822 PMCID: PMC9260438 DOI: 10.1016/j.conctc.2022.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Bayesian Optimal Interval (BOIN) designs are a class of model-assisted dose-finding designs that can be used in oncology trials to determine the maximum tolerated dose (MTD) of a study drug based on safety or the optimal biological dose (OBD) based on safety and efficacy. BOIN designs provide a complete suite for dose finding in early phase trials, as well as a consistent way to explore different scenarios such as toxicity, efficacy, continuous outcomes, delayed toxicity or efficacy and drug combinations in a unified manner with easy access to software to implement most of these designs. Although built upon Bayesian probability models, BOIN designs are operationally simple in general and have good statistical operating characteristics compared to other dose-finding designs. This review paper describes the original BOIN design and its many extensions, their advantages and limitations, the software used to implement them, and the most suitable situation for use of each of these designs. Published examples of the implementation of BOIN designs are provided in the Appendix.
Collapse
Affiliation(s)
| | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chunsheng He
- Bristol-Myers Squibb (BMS), 300 Connell Drive, Berkeley Heights, NJ, 07922, USA
| | - Yanping Chen
- Bristol-Myers Squibb (BMS), 300 Connell Drive, Berkeley Heights, NJ, 07922, USA
| | | | - Michael LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| |
Collapse
|
10
|
Takeda K, Morita S, Taguri M. gBOIN-ET: The generalized Bayesian optimal interval design for optimal dose-finding accounting for ordinal graded efficacy and toxicity in early clinical trials. Biom J 2022; 64:1178-1191. [PMID: 35561046 DOI: 10.1002/bimj.202100263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/22/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022]
Abstract
One of the primary objectives of an oncology dose-finding trial for novel therapies, such as molecular targeted agents and immune-oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low- or moderate-grade toxicities than dose-limiting toxicities. Besides, efficacy should be evaluated as an overall response and stable disease in solid tumors and the difference between complete remission and partial remission in lymphoma. This paper proposes the generalized Bayesian optimal interval design for dose-finding accounting for efficacy and toxicity grades. The new design, named "gBOIN-ET" design, is model-assisted, simple, and straightforward to implement in actual oncology dose-finding trials than model-based approaches. These characteristics are quite valuable in practice. A simulation study shows that the gBOIN-ET design has advantages compared with the other model-assisted designs in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.
Collapse
Affiliation(s)
- Kentaro Takeda
- Data Science, Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Taguri
- Department of Data Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|