1
|
Wang J, Beghelli D, Amici A, Sut S, Dall’Acqua S, Lupidi G, Dal Ben D, Bistoni O, Tomassoni D, Belletti B, Musa S, Mahajna J, Pucciarelli S, Marchini C. Chaga Mushroom Triterpenoids Inhibit Dihydrofolate Reductase and Act Synergistically with Conventional Therapies in Breast Cancer. Biomolecules 2024; 14:1454. [PMID: 39595631 PMCID: PMC11591880 DOI: 10.3390/biom14111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Inonotus obliquus (Chaga) is a medicinal mushroom with several pharmacological properties that is used as a tea in traditional Chinese medicine. In this study, Chaga water extract was digested in vitro to mimic the natural processing and absorption of its biocomponents when it is consumed as functional beverage, and its anticancer activities were evaluated in breast cancer (BC) cell lines, representing HER2-positive and triple-negative subtypes. After chemical characterization by liquid chromatography/mass spectrometry (HR-QTOF) analysis, the effect of Chaga biocomponents on cell viability and cell cycle progression was assessed by MTT assay, FACS analysis, and Western blot. Dihydrofolate reductase (DHFR) activity was measured by an enzymatic assay. Four highly bioactive triterpenoids (inotodiol, trametenolic acid, 3-hydroxy-lanosta-8,24-dien-21-al, and betulin) were identified as the main components, able to decrease BC cell viability and block the cell cycle in G0/G1 by inducing the downregulation of cyclin D1, CDK4, cyclin E, and phosphorylated retinoblastoma protein. DHFR was identified as their crucial target. Moreover, bioactive Chaga components exerted a synergistic action with cisplatin and with trastuzumab in SK-BR-3 cells by inhibiting both HER2 and HER1 activation and displayed an immunomodulatory effect. Thus, Inonotus obliquus represents a source of triterpenoids that are effective against aggressive BC subtypes and display properties of targeted drugs.
Collapse
Affiliation(s)
- Junbiao Wang
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Stefania Sut
- DAFNAE Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, 35020 Legnaro, Italy;
| | - Stefano Dall’Acqua
- DSF Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy;
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Diego Dal Ben
- School of Pharmacy-Chemistry Interdisciplinary Project (CHIP), University of Camerino, 62032 Camerino, Italy;
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Sanaa Musa
- Natural Compounds and Organic Synthesis, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel; (S.M.); (J.M.)
- Department of Biotechnology, Tel Hai College, Kiryat Shmona 1220800, Israel
| | - Jamal Mahajna
- Natural Compounds and Organic Synthesis, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel; (S.M.); (J.M.)
- Cancer Drug Discovery Program, Migal, Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy; (D.B.); (A.A.); (D.T.); (C.M.)
| |
Collapse
|
2
|
Arast Y, Esfandiari H, Kamranfar F, Mousavi Z, Ameri Shah Reza M, Pourahmad J. Evaluating the concentration dependent dual effects of β-Glucan on cancerous skin cells and mitochondria isolated from melanoma-induced animal model. Cutan Ocul Toxicol 2024:1-9. [PMID: 39392009 DOI: 10.1080/15569527.2024.2410355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Melanoma is still one of the deadliest cancers whose prevalence has increased in recent decades. Today, many polysaccharides and their bioactive compounds have been of special importance in modern biotechnology. They have various biological and therapeutic properties. they can regulate and strengthen the immune system, lower blood pressure and cholesterol, and reduce bacterial and viral infections. According to studies, these compounds also have antitumor properties. we investigated the cytotoxic effects of β-Glucan obtained from solid-state fermentation (SSF) of edible medicinal mushroom Lentinus edodes on cancerous skin cells. MATERIALS AND METHODS The mitochondria were isolated from melanoma cells via differential centrifugation and treated with various concentrations (30, 45, 60, 90, 120, and 240 µg/ml) of β-Glucan extract. Then, they were subjected to MTT, ROS, MMP decline, mitochondrial swelling, cytochrome c release, and flow cytometry assays. RESULTS The results of the MTT assay showed that IC50 of β-Glucan extract was 60 μg/ml, and it induced a selectively significant (P < 0.05) concentration-dependent decrease in the SDH activity in cancerous skin mitochondria. At higher concentrations, no such effect was observed. The ROS results also showed that 30, 45, and 60 µg/ml concentrations of β-Glucan extract significantly increased ROS. However, no such effect was observed at higher concentrations. MMP decline and the release of cytochrome c in cancer groups mitochondria and swelling were significantly increased at 30, 45, and 60 µg/ml compared to the control group. At higher concentrations, no such effect was observed. β-Glucan extract at 60 µg/ml concentration increased apoptosis on melanoma cells, while it had no effect on control non-tumour cells. DISCUSSION AND CONCLUSION Based on these results, β-Glucan extract at 30, 45, and 60 µg/ml showed a cytotoxic effect, while no such effect was observed at higher concentrations. Overall, it seems that β-Glucan has antioxidant and free radical scavenging effects on cancer cells at higher concentrations.
Collapse
Affiliation(s)
- Yalda Arast
- Research center of Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Hanife Esfandiari
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Farzane Kamranfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Camilleri E, Blundell R, Baral B, Karpinski TM, Aruci E, Atrooz OM. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (chaga) mushrooms. Heliyon 2024; 10:e35638. [PMID: 39170453 PMCID: PMC11336990 DOI: 10.1016/j.heliyon.2024.e35638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
This literature review offers an extensive exploration of Chaga mushrooms (Inonotus obliquus), focusing on their phytochemical composition, health-promoting attributes, and mechanisms of action. The aim was to provide an up-to-date overview of Chaga's significance in the medicinal sector, emphasizing its potential role in diverse health benefits. The review highlights Chaga's remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and immunomodulating properties. By synthesizing recent findings, this work underscores Chaga's importance in the medicinal industries and provides valuable insights into its pharmacological potential.
Collapse
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, MSD2080, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD2080, Imsida, Malta
| | - Bikash Baral
- University of Helsinki, Helsinki, Finland
- Institute of Biological Resources (IBR), Kathmandu, Nepal
| | - Tomasz M. Karpinski
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland
| | - Edlira Aruci
- Western Balkans University, Autostrada Tirane-Durres km 7, Albania
| | - Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Biological Sciences, Mutah University, P.O.Box(7), Mutah, Jordan
| |
Collapse
|
4
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Tee PYE, Krishnan T, Cheong XT, Maniam SAP, Looi CY, Ooi YY, Chua CLL, Fung SY, Chia AYY. A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. Fungal Biol Biotechnol 2024; 11:7. [PMID: 38987829 PMCID: PMC11238383 DOI: 10.1186/s40694-024-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.
Collapse
Affiliation(s)
- Phoebe Yon Ern Tee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Thiiben Krishnan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Xin Tian Cheong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Snechaa A P Maniam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Caroline Lin Lin Chua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Shin-Yee Fung
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia.
| |
Collapse
|
6
|
Fordjour E, Manful CF, Javed R, Galagedara LW, Cuss CW, Cheema M, Thomas R. Chaga mushroom: a super-fungus with countless facets and untapped potential. Front Pharmacol 2023; 14:1273786. [PMID: 38116085 PMCID: PMC10728660 DOI: 10.3389/fphar.2023.1273786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Inonotus obliquus (Chaga mushroom) is an inexpensive fungus with a broad range of traditional and medicinal applications. These applications include therapy for breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits are virtually untapped due to a limited understanding of its mycochemical composition and bioactivities. In this article, we explore the ethnobotany, mycochemistry, pharmacology, traditional therapeutic, cosmetic, and prospective agricultural uses. The review establishes that several secondary metabolites, such as steroids, terpenoids, and other compounds exist in chaga. Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-inflammatory, antiviral, and antitumor agent. The study also demonstrates that Chaga powder has a long history of traditional use for medicinal purposes, pipe smoking rituals, and mystical future forecasts. The study further reveals that the applications of Chaga powder can be extended to industries such as pharmaceuticals, food, cosmetics, and agriculture. However numerous publications focused on the pharmaceutical benefits of Chaga with few publications on other applications. Overall, chaga is a promising natural resource with a wide range of potential applications and therefore the diverse array of therapeutic compounds makes it an attractive candidate for various applications such as plant biofertilizers and active ingredients in cosmetics and pharmaceutical products. Thus, further exploration of Chaga's potential benefits in agriculture and other industries could lead to exciting new developments and innovations.
Collapse
Affiliation(s)
- Eric Fordjour
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Charles F. Manful
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman W. Galagedara
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Chad W. Cuss
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Mumtaz Cheema
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| | - Raymond Thomas
- Biotron Experimental Climate Change Research Centre, Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Meng L, Liu F, Du C, Zhu J, Xiong Q, Li J, Sun W. Glucosamine-Modified Reduction-Responsive Polymeric Micelles for Liver Cancer Therapy. Molecules 2023; 28:molecules28093824. [PMID: 37175234 PMCID: PMC10180462 DOI: 10.3390/molecules28093824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, glucose transporter-1 (GLUT-1) and glutathione (GSH) over-expression in liver cancer was utilized to design a reduction-responsive and active targeting drug delivery system AG-PEG-SS-PCL (APSP) for the delivery of sorafenib (SF). The SF-APSP micelles were prepared using the thin film hydration method and characterized by various techniques. In vitro release experiments showed that the cumulative release of SF-APSP micelles in the simulated tumor microenvironment (pH 7.4 with GSH) reached 94.76 ± 1.78% at 48 h, while it was only 20.32 ± 1.67% in the normal physiological environment (pH 7.4 without GSH). The in vitro study revealed that glucosamine (AG) enhanced the antitumor effects of SF, and SF-APSP micelles inhibited proliferation by targeting HepG2 cells and suppressing cyclin D1 expression. The in vivo antitumor efficacy study further confirmed that the SF-APSP micelles had excellent antitumor effects and better tolerance against nude mouse with HepG2 cells than other treatment groups. All in all, these results indicated that SF-APSP micelles could be a promising drug delivery system for anti-hepatoma treatment.
Collapse
Affiliation(s)
- Lei Meng
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Fangshu Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Chenchen Du
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jiaying Zhu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Qian Xiong
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jing Li
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
8
|
Ye X, Wu K, Xu L, Cen Y, Ni J, Chen J, Zheng W, Liu W. Methanol extract of Inonotus obliquus improves type 2 diabetes mellitus through modifying intestinal flora. Front Endocrinol (Lausanne) 2023; 13:1103972. [PMID: 36686454 PMCID: PMC9852891 DOI: 10.3389/fendo.2022.1103972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant risk to human health. Previous research demonstrated that Inonotus obliquus possesses good hypolipidemic, anti-inflammatory, and anti-tumor properties. In this research, we aim to investigate the potential treatment outcomes of Inonotus obliquus for T2DM and discuss its favourable influences on the intestinal flora. The chemical composition of Inonotus obliquus methanol extracts (IO) was analyzed by ultra-high-performance liquid chromatography-Q extractive-mass spectrometry. IO significantly improved the blood glucose level, blood lipid level, and inflammatory factor level in T2DM mice, and effectively alleviated the morphological changes of colon, liver and renal. Acetic acid, propionic acid, and butyric acid levels in the feces of the IO group were restored. 16S rRNA gene sequencing revealed that the intestinal flora composition of mice in the IO group was significantly modulated. Inonotus obliquus showed significant hypoglycemic and hypolipidemic effects with evident anti-inflammatory activity and improved the morphological structure of various organs and cells. Inonotus obliquus increased the levels of short-chain fatty acids in the environment by increasing the population of certain bacteria that produce acid, such as Alistipes and Akkermansia, which are beneficial to improve intestinal flora disorders and maintain intestinal flora homeostasis. Meanwhile, Inonotus obliquus further alleviated T2DM symptoms in db/db mice by down-regulating the high number of microorganisms that are dangerous, such as Proteobacteria and Rikenellaceae_RC9_gut_group and up-regulating the abundance of beneficial bacteria such as Odoribacter and Rikenella. Therefore, this study provides a new perspective for the treatment of T2DM by demonstrating that drug and food homologous active substances could relieve inflammation via regulating intestinal flora.
Collapse
Affiliation(s)
- Xuewei Ye
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kefei Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Langyu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yingxin Cen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiahui Ni
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Junyao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wenxin Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Abugomaa A, Elbadawy M, Ishihara Y, Yamamoto H, Kaneda M, Yamawaki H, Shinohara Y, Usui T, Sasaki K. Anti-cancer activity of Chaga mushroom ( Inonotus obliquus) against dog bladder cancer organoids. Front Pharmacol 2023; 14:1159516. [PMID: 37153767 PMCID: PMC10154587 DOI: 10.3389/fphar.2023.1159516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Despite its disadvantages, chemotherapy is still commonly used for the treatment of bladder cancer (BC). Developing natural supplements that can target cancer stem cells (CSCs) which cause drug resistance and distant metastasis is necessary. Chaga mushrooms are popular to have several health-promoting and anti-cancer potentials. Organoid culture can recapitulate tumor heterogeneity, epithelial environment, and genetic and molecular imprints of the original tissues. In the previous study, we generated dog bladder cancer organoids (DBCO) as a novel experimental model of muscle-invasive BCO. Therefore, the present study aimed to examine the anti-tumor potentials of Chaga mushroom extract (Chaga) against DBCO. Four strains of DBCO were used in the present study. Treatment with Chaga inhibited the cell viability of DBCO in a concentration-dependent way. Treatment of DBCO with Chaga has significantly arrested its cell cycle and induced apoptosis. Expression of bladder CSC markers, CD44, C-MYC, SOX2, and YAP1, declined in the Chaga-treated DBCO. Also, Chaga inhibited the phosphorylation of ERK in DBCO. Expression of downstream signals of ERK, C-MYC, and Cyclins (Cyclin-A2, Cyclin-D1, Cyclin-E1, and CDK4) was also inhibited by Chaga in DBCO. Interestingly, the combinational treatment of DBCO with Chaga and anti-cancer drugs, vinblastine, mitoxantrone, or carboplatin, showed a potentiating activity. In vivo, Chaga administration decreased tumor growth and weight of DBCO-derived xenograft in mice with the induction of necrotic lesions. In conclusion, Chaga diminished the cell viability of DBCO by inhibiting proliferation-related signals and stemness conditions as well as by arresting the cell cycle. Collectively, these data suggest the value of Chaga as a promising natural supplement that could potentiate the effect of adjuvant chemotherapy, lower its adverse effects, and thus, limit the recurrence and metastasis of BC.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
- *Correspondence: Mohamed Elbadawy, ; Tatsuya Usui,
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry Co., Ltd., Tokyo, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- *Correspondence: Mohamed Elbadawy, ; Tatsuya Usui,
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
11
|
Panda MK, Paul M, Singdevsachan SK, Tayung K, Das SK, Thatoi H. Promising Anti-cancer Therapeutics From Mushrooms: Current Findings and Future Perceptions. Curr Pharm Biotechnol 2021; 22:1164-1191. [PMID: 33032507 DOI: 10.2174/1389201021666201008164056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nowadays, medicines derived from natural sources have drawn much attention as potential therapeutic agents in the suppression and treatment of cancer because of their low toxicity and fewer side effects. OBJECTIVE The present review aims to assess the currently available knowledge on the ethnomedicinal uses and pharmacological activities of bioactive compounds obtained from medicinal mushrooms towards cancer treatment. METHODS A literature search has been conducted for the collection of research papers from universally accepted scientific databases. These research papers and published book chapters were scrutinized to retrieve information on ethnomedicinal uses of mushrooms, different factors involved in cancer cell proliferation, clinical and in silico pharmaceutical studies made for possible treatments of cancer using mushroom derived compounds. Overall, 241 articles were retrieved and reviewed from the year 1970 to 2020, out of which 98 relevant articles were finally considered for the preparation of this review. RESULTS This review presents an update on the natural bioactive substances derived from medicinal mushrooms and their role in inhibiting the factors responsible for cancer cell proliferation. Along with it, the present review also provides information on the ethnomedicinal uses, solvents used for extraction of anti-cancer metabolites, clinical trials, and in silico studies that were undertaken towards anticancer drug development from medicinal mushrooms. CONCLUSION The present review provides extensive knowledge on various anti-cancer substances obtained from medicinal mushrooms, their biological actions, and in silico drug designing approaches, which could form a basis for the development of natural anti-cancer therapeutics.
Collapse
Affiliation(s)
- Mrunmaya K Panda
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Manish Paul
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| | - Sameer K Singdevsachan
- Spinco Biotech Pvt. Ltd., Spinco Towers, No. 934, 5th A cross, Service Road, HRBR Layout 1st Block, Kalyan Nagar, Bengaluru-560043, Karnataka, India
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Guwahati-781014, Assam, India
| | - Swagat K Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar- 751003, Odisha, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Baripada-757003, Odisha, India
| |
Collapse
|
12
|
Antiviral, Cytotoxic, and Antioxidant Activities of Three Edible Agaricomycetes Mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J Fungi (Basel) 2021; 7:jof7080645. [PMID: 34436184 PMCID: PMC8399653 DOI: 10.3390/jof7080645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, we investigated aqueous extracts of three edible mushrooms: Agaricus bisporus (white button mushroom), Pleurotus columbinus (oyster mushroom), and Pleurotus sajor-caju (grey oyster mushroom). The extracts were biochemically characterized for total carbohydrate, phenolic, flavonoid, vitamin, and protein contents besides amino acid analysis. Triple TOF proteome analysis showed 30.1% similarity between proteomes of the two Pleurotus spp. All three extracts showed promising antiviral activities. While Pleurotus columbinus extract showed potent activity against adenovirus (Ad7, selectivity index (SI) = 4.2), Agaricus bisporus showed strong activity against herpes simplex II (HSV-2; SI = 3.7). The extracts showed low cytotoxicity against normal human peripheral blood mononuclear cells (PBMCs) and moderate cytotoxicity against prostate (PC3, DU-145); colorectal (Colo-205); cecum carcinoma (LS-513); liver carcinoma (HepG2); cervical cancer (HeLa); breast adenocarcinoma (MDA-MB-231 and MCF-7) as well as leukemia (CCRF-CEM); acute monocytic leukemia (THP1); acute promyelocytic leukemia (NB4); and lymphoma (U937) cell lines. Antioxidant activity was evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, 2,2′-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid) ABTS radical cation scavenging, and oxygen radical absorbance capacity (ORAC) assays. The three extracts showed potential antioxidant activities with the maximum activity recorded for Pleurotus columbinus (IC50 µg/mL) = 35.13 ± 3.27 for DPPH, 13.97 ± 4.91 for ABTS, and 29.42 ± 3.21 for ORAC assays.
Collapse
|
13
|
Elhusseiny SM, El-Mahdy TS, Awad MF, Elleboudy NS, Farag MMS, Yassein MA, Aboshanab KM. Proteome Analysis and In Vitro Antiviral, Anticancer and Antioxidant Capacities of the Aqueous Extracts of Lentinula edodes and Pleurotus ostreatus Edible Mushrooms. Molecules 2021; 26:4623. [PMID: 34361776 PMCID: PMC8348442 DOI: 10.3390/molecules26154623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.
Collapse
Affiliation(s)
- Shaza M. Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
| | - Taghrid S. El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Area, 6th of October City, Cairo 2566, Egypt; (S.M.E.); (T.S.E.-M.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 11099, Saudi Arabia;
| | - Nooran S. Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Mahmoud A. Yassein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo 11566, Egypt; (N.S.E.); (M.A.Y.)
| |
Collapse
|
14
|
β-Glucan: A dual regulator of apoptosis and cell proliferation. Int J Biol Macromol 2021; 182:1229-1237. [PMID: 33991557 DOI: 10.1016/j.ijbiomac.2021.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
β-Glucans are polysaccharides generally obtained from the cell wall of bacteria, fungi, yeasts, and aleurone layer of cereals. β-Glucans are polymers, with β-1,3 glucose as core linear structure, but they differ in their main branch length, linkages and branching patterns, giving rise to high and low-molecular-weight β-glucans. They are well-known cell response modifiers with immune-modulating, nutraceutical and health beneficial effects, including anticancer and pro-apoptotic properties. β-Glucan extracts have shown positive responses in controlling tumor cell proliferation and activation of the immune system. The immunomodulatory action of β-glucans enhances the host's antitumor defense against cancer. In consonance with the above, many studies have shown that β-glucan treatment leads to the induction of apoptotic death of cancer cells. The ability of β-glucans to stimulate apoptotic pathways or the proteins involved in apoptosis prompting a new domain in cancer therapy. β-glucan can be a potential therapeutic agent for the treatment of cancer. However, there is a need to legitimize the β-glucan type, as most of the studies include β-glucan from different sources having different physicochemical properties. The body of literature presented here focuses on the effects of β-glucan on immunomodulation, proliferation, cell death and the possible mechanisms and pathways involved in these processes.
Collapse
|
15
|
Park S, Shin H, Park D, Kim H, Byun Y, Lee KY. Structure elucidation of a new triterpene from Inonotus obliquus. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:489-494. [PMID: 32959923 DOI: 10.1002/mrc.5102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Ethyl acetate (EtOAc) fraction of the Inonotus obliquus (Hymenochaetaceae) significantly inhibited nitric oxide production in lipopolysaccharide (LPS)-induced murine BV2 microglial cells. A new triterpene, characterized as inonotusol H (1), was isolated from the EtOAc fraction using the bioactivity-guided fractionation together with four known triterpenes, inotodiol (2), trametenolic acid (3), inonotsutriols A (4), and inonotusol A (5). Among them, Compounds 2-4 significantly reduced LPS-induced nitric oxide production to 4.5 ± 0.8%, 47.4 ± 4.4%, and 2.8 ± 1.7%, respectively, at a concentration of 30 μM.
Collapse
Affiliation(s)
- Sangmin Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hyeji Shin
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dawon Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hyunwoo Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, San Diego, CA, USA
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ki Yong Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| |
Collapse
|
16
|
Solek P, Shemedyuk N, Shemedyuk A, Dudzinska E, Koziorowski M. Risk of wild fungi treatment failure: Phallus impudicus-induced telomere damage triggers p21/p53 and p16-dependent cell cycle arrest and may contribute to male fertility reduction in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111782. [PMID: 33321417 DOI: 10.1016/j.ecoenv.2020.111782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The multifunctional characteristics of Phallus impudicus extract encourage to conduct research for its potential use in medical applications. Well, science is constantly seeking new evidence for the biological activity of extracts of natural origin. Drugs of natural origin should not cause any side effects on the physiological functions of the human body; however, this is not always successful. In this study, we used in vitro approach to evaluate the toxicity of alcohol Phallus impudicus extract on spermatogenic cells. We show, for the first time, cytotoxic properties of Phallus impudicus treatment associated with a decrease in cellular metabolic activity, dysregulation of redox homeostasis and impairment of selected antioxidant cell protection systems. As a consequence, p53/p21- and p16-mediated cell cycle arrest followed by p27 activation is initiated. The observed changes were associated with telomere shortening and numerous DNA damage at the chromosome ends (altered expression pattern of TRF1 and TRF2 proteins), as well as upregulation of cleaved caspase-3 with a decrease in Bcl-2 expression, suggesting induction of apoptotic death. Therefore, these results provide molecular evidence for mechanistic pathways and novel adverse outcomes linked to the Phallus impudicus treatment towards men's health and fertility reduction.
Collapse
Affiliation(s)
- Przemyslaw Solek
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Poland.
| | - Nataliya Shemedyuk
- Department of Biotechnology and Radiology, Stepan Gzhytskyj National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
| | | | - Ewa Dudzinska
- Department of Public Health, Faculty of Health Sciences, Medical University of Lublin, Poland
| | - Marek Koziorowski
- Department of Animal Physiology and Reproduction, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Poland
| |
Collapse
|
17
|
Eid JI, Al-Tuwaijri MM, Mohanty S, Das B. Chaga mushroom ( Inonotus obliquus) polysaccharides exhibit genoprotective effects in UVB-exposed embryonic zebrafish ( Danio rerio) through coordinated expression of DNA repair genes. Heliyon 2021; 7:e06003. [PMID: 33598573 PMCID: PMC7868817 DOI: 10.1016/j.heliyon.2021.e06003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/06/2023] Open
Abstract
Chaga mushroom is one of the promising beneficial mushrooms thriving in the colder parts of Northern hemisphere. Chaga polysaccharides (IOP) have been reported to enhance immune response and alleviate oxidative stress during development. However, the effects of IOP on the genotoxicity in model organisms are yet to be clarified. In this study, IOP was extracted using hot water extraction method, followed by GC analysis. Zebrafish embryos (12 h post fertilization, hpf) were exposed to transient UVB (12 J/m2/s, 305-310nm) for 10 s using a UV hybridisation chamber, followed by IOP treatment (2.5 mg/mL) at 24 hpf for up to 7 days post fertilization (dpf). The genotoxic effects were assessed using acridine orange staining, alkaline comet assay, and qRT-PCR for screening DNA repair genes. Significant reduction in DNA damage and amelioration of the deformed structures in the IOP-treated zebrafish exposed to UVB (p < 0.05) was observed at 5 dpf and thereafter. The relative mRNA expressions of XRCC-5, XRCC-6, RAD51, and GADD45 were significantly upregulated, whereas p53 and BAX were downregulated in IOP-treated UVB-exposed zebrafish compared to UVB-exposed zebrafish. ELISA analysis revealed significantly decreased expression of XRCC5 and RAD51 in UVB-exposed compared to IOP-treated UVB-exposed and control zebrafish (7 dpf). However, p53 and BAX levels were high in UVB-exposed zebrafish, indicating higher apoptosis. Pathway analysis demonstrated coordinated regulation of DNA repair genes; p53 playing a pivotal role in regulating the expression of BAX, thereby promoting apoptosis in UVB-exposed zebrafish. Overall, IOP treatment ameliorated the genotoxic effects in UVB-exposed zebrafish by enhanced expression of DNA repair genes, which assisted in normal development. The study delineated the efficacy of IOP in mitigating UV-induced DNA damage in zebrafish.
Collapse
Affiliation(s)
- Jehane Ibrahim Eid
- Department of Zoology, Faculty of Science, Cairo University, 12613, Egypt
| | | | | | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| |
Collapse
|
18
|
Zhao Y, Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113321. [PMID: 32877719 DOI: 10.1016/j.jep.2020.113321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The crude extracts of the medicinal mushroom Inonotus obliquus have been used as an effective traditional medicine to treat malicious tumors, gastritis, gastric ulcers, and other inflammatory conditions in Russia and most Baltic countries. AIM OF THIS REVIEW Deciphering the antitumoral potential of the bioactive metabolites from I. obliquus and addressing its possibility to be used as effective agents for tumor treatment, restoration of compromised immunity and protection of gastrointestinal damage caused by chemotherapy. MATERIALS AND METHODS We analysed the current achievements and dilemma in tumor chemo- or immunotherapy. In this context, we searched the published literatures on I. obliquus covering from 1990 to 2020, and summarized the activities of antitumor, antioxidation, and immunomodulation by the polysaccharides, triterpenoids, small phenolic compounds, and hispidin polyphenols. By comparing the merits and shortcomings of current and traditional methodology for tumor treatment, we further addressed feasibility for the use of I. obliquus as an effective natural drug for tumor treatment and prevention. RESULTS The diverse bioactive metabolites confer I. obliquus great potential to inhibit tumor growth and metastasis. Its antitumor activities are achieved either through suppressing multiple oncogenic signals including but not limited to the activation of NF-κB and FAK, and the expression of RhoA/MMP-9 via ERK1/2 and PI3K/Akt signaling pathway. The antitumor activities can also be achieved by inhibiting tyrosinase activity via PAK1-dependent signaling pathway or altering lysosomal membrane permeabilization through blocking tubulin polymerization and/or disturbing energy metabolism through LKB1/AMPK pathway. In addition, the metabolites from I. obliquus also harbour the potentials to reverse MDR either through selective inhibition on P-gp/ABCB1 or MRP1/ABCC1 proteins or the induction of G2/M checkpoint arrest in tumor cells of chemoresistant phenotypes mediated by Nox/ROS/NF-kB/STAT3 signaling pathway. In addition to the eminent effects in tumor inhibition, the metabolites in I. obliquus also exhibit immunomodulatory potential to restore the compromised immunity and protect against ulcerative damage of GI tract caused by chemotherapy. CONCLUSIONS I. obliquus possesses the potential to reduce incidence of tumorigenesis in healthy people. For those whose complete remission has been achieved by chemotherapy, administration of the fungus will inhibit the activation of upstream oncogenic signals and thereby prevent metastasis; for those who are in the process of chemotherapy administration of the fungus will not only chemosensitize the tumor cells and thereby increasing the chemotherapeutic effects, but also help to restore the compromised immunity and protect against ulcerative GI tract damage and other side-effects induced by chemotherapy.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
19
|
Szychowski KA, Skóra B, Pomianek T, Gmiński J. Inonotus obliquus - from folk medicine to clinical use. J Tradit Complement Med 2020; 11:293-302. [PMID: 34195023 PMCID: PMC8240111 DOI: 10.1016/j.jtcme.2020.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
The Inonotus obliquus (I. obliquus) mushroom was traditionally used to treat various gastrointestinal diseases. For many years, mounting evidence has indicated the potential of I. obliquus extracts for treatment of viral and parasitic infections. Furthermore, substances from I. obiquus have been shown to stimulate the immune system. The most promising finding was the demonstration that I. obliquus has hypoglycemic and insulin sensitivity potential. This review summarizes the therapeutic potential of I. obliquus extracts in counteracting the progression of cancers and diabetes mellitus as well as their antiviral and antiparasitic activities and antioxidant role. As shown by literature data, various authors have tried to determine the molecular mechanism of action of I. obliquus extracts. Two mechanisms of action of I. obliquus extracts are currently emerging. The first is associated with the broad-sense impact on antioxidant enzymes and the level of reactive oxygen species (ROS). The other is related to peroxisome proliferator-activated receptor gamma (PPARγ) effects. This receptor may be a key factor in the anti-inflammatory, antioxidant, and anti-cancer activity of I. obliquus extracts. It can be concluded that I. obliquus fits the definition of functional food and has a potentially positive effect on health beyond basic nutrition; however, studies that meet the evidence-based medicine (EBM) criteria are needed. Extracts or polysaccharides from I. obliquus exhibit an anti-cancer potential in vitro. Extracts or polysaccharides from I. obliquus exhibit anti-inflammation potential. Extracts or polysaccharides from I. obliquus exhibit hypoglycemic and insulin sensitivity potential.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Tadeusz Pomianek
- Department of Management, Faculty of Administration and Social Sciences, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
20
|
Practical Application of "About Herbs" Website: Herbs and Dietary Supplement Use in Oncology Settings. ACTA ACUST UNITED AC 2020; 25:357-366. [PMID: 31567464 DOI: 10.1097/ppo.0000000000000403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Integrative Medicine Service at Memorial Sloan Kettering Cancer Center developed and maintains About Herbs (www.aboutherbs.com), which provides summaries of research data including purported uses, adverse effects, and herb-drug interactions for about 284 dietary supplements. Using Google Analytics, we found the website registered more than 26,317,000 hits since November 2002. The 10 most searched-for herbs/supplements of 2018 are chaga mushroom, turmeric, ashwagandha, reishi mushroom, graviola, Active Hexose-Correlated Compound, boswellia, dandelion, green tea, and Coriolus versicolor. Here we discuss their safety, herb-drug interactions, and appropriate uses in the oncology setting, based on literature searches in PubMed. Over the past 16 years, the evidence for use of these supplements is based mostly on preclinical findings, with few well-designed studies and limited trials conducted in cancer patients. It is important to familiarize health care professionals about popular supplements, so patients can be informed to make decisions that maximize benefits and minimize risks.
Collapse
|
21
|
Regulation of cancer cell signaling pathways as key events for therapeutic relevance of edible and medicinal mushrooms. Semin Cancer Biol 2020; 80:145-156. [DOI: 10.1016/j.semcancer.2020.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
|
22
|
Jiang S, Shi F, Lin H, Ying Y, Luo L, Huang D, Luo Z. Inonotus obliquus polysaccharides induces apoptosis of lung cancer cells and alters energy metabolism via the LKB1/AMPK axis. Int J Biol Macromol 2019; 151:1277-1286. [PMID: 31751687 DOI: 10.1016/j.ijbiomac.2019.10.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022]
Abstract
The present study explores the mechanisms underlying the anti-cancer action of Inonotus obliquus polysaccharides (IOP). Thus, we characterized the IOP components extracted from Chaga sclerotium and, found that the extracts contained 70% polysaccharides with an average molecular weight of 4.5 × 104 Da consisting of 75% glucose. We then showed that IOP extract activated AMPK in lung cancer cells expressing LKB1, suppressed cell viability, colony-formation, and triggered cell apoptosis. In conjunction, IOP downregulated Bcl-2, upregulated Bax, and enhanced cleavage of Caspase-3 and PARP. All of these effects were prevented by treatment with Compound C, a chemical inhibitor of AMPK. IOP diminished mitochondrial membrane potential (MMP), concurrent with decreases in oxidative phosphorylation and glycolysis, which was dependent on LKB1/AMPK. Finally, IOP at a dosage of 50 mg/kg significantly inhibited allograft tumor growth of the LLC1 cells in association with increased apoptosis. Collectively, our results demonstrate that IOP acts on cancer cells through a mechanism by which AMPK triggers the apoptotic pathway via the opening of mitochondrial permeability transition pore, and reducing MMP, leading to an inhibition of ATP production. Therefore, our study provides a solid foundation for the use of IOP as a promising alternative or supplementary medicine for cancer therapy.
Collapse
Affiliation(s)
- Shuping Jiang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Fuli Shi
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Nanchang University Jiangxi Medical College, China.
| |
Collapse
|
23
|
Duru KC, Kovaleva EG, Danilova IG, Bijl P. The pharmacological potential and possible molecular mechanisms of action ofInonotus obliquusfrom preclinical studies. Phytother Res 2019; 33:1966-1980. [DOI: 10.1002/ptr.6384] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Kingsley C. Duru
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Elena G. Kovaleva
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
| | - Irina G. Danilova
- Department of Technology for Organic SynthesisUral Federal University Yekaterinburg Russia
- Institute of Immunology and Physiology of the Ural BranchRussia Academy of Science Yekaterinburg Russia
| | - Pieter Bijl
- Department of Pharmacology, Faculty of Medicine and Health SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
24
|
Baek J, Roh HS, Baek KH, Lee S, Lee S, Song SS, Kim KH. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:63-75. [PMID: 29800742 DOI: 10.1016/j.jep.2018.05.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus obliquus, also known as Chaga mushroom, is one of the most widely appreciated wild edible mushrooms in Russia and northern European countries and is renowned for its use in cancer treatment. Indeed, recently published in vitro and in vivo studies have demonstrated its anticancer activity in various types of cancer and support its potential application for therapeutic intervention in cancer. However, its activity against lung cancer, the most commonly diagnosed cancer and the leading cause of cancer death worldwide, and the underlying molecular basis of its action remain to be fully elucidated. OBJECTIVE This study aimed to evaluate the cytotoxic activity of I. obliquus in four human lung adenocarcinoma cell lines with different p53 status (A549, H1264, H1299, and Calu-6) and identify its active constituents by bioactivity-based analysis and the underlying molecular basis of their cytotoxicity on lung cancer cells. MATERIALS AND METHODS Bioactivity-guided fractionation and preparative/semi-preparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) were assessed using the WST-1 assay and TUNEL staining, respectively. Caspase activation was assessed by detecting its surrogate markers, cleaved poly (ADP-ribose) polymerase (PARP) and caspase-3, using an immunoblot assay. RESULTS The MeOH extract of I. obliquus reduced cell viability in all lung cancer cell lines tested through induction of apoptosis accompanied by caspase-3 cleavage. Bioactivity-guided fractionation of the MeOH extract and chemical investigation of its cytotoxic hexane-soluble and CH2Cl2-soluble fractions led to the isolation of eight triterpenoids (1-8), including a new lanostane-type triterpenoid named chagabusone A (7). The structures of the isolates were elucidated based on spectroscopic analysis, including 1D and 2D NMR and high-resolution ESIMS. Among isolated compounds, compounds 1, 6, and 7 showed the most potent cytotoxic activity in all human lung cancer cell lines examined, with IC50 values ranging from 75.1 to 227.4 μM. Cytotoxicity of these compounds was mediated by apoptosis with caspase-3 activation. CONCLUSION These findings provide experimental evidence supporting the potential application of I. obliquus in lung cancer treatment and reveal the molecular basis underlying its cytotoxic activity against human lung cancer cells.
Collapse
Affiliation(s)
- Jiwon Baek
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seul Lee
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Seong-Soo Song
- Department of Molecular and Cellular Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
25
|
Szychowski KA, Rybczyńska-Tkaczyk K, Tobiasz J, Yelnytska-Stawasz V, Pomianek T, Gmiński J. Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Nguyen HT, Ho DV, Nguyen PDQ, Vo HQ, Do TT, Raal A. Cytotoxic Evaluation of Compounds Isolated from the Aerial Parts of Hedyotis pilulifera and Methanol Extract of Inonotus obliquus. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the inhibitory activity of compounds isolated from the aerial parts of Hedyotis pilulifera (Pit.) T.N. Ninh toward selected cancer cell lines. The isolated compounds were identified by analyzing their nuclear magnetic resonance spectral data and physical properties, and comparison of these with reported data. The sulforhodamine B assay was used for the cytotoxic evaluation of isolates. Among twenty-one compounds isolated from H. pilulifera, compounds 2, 3, and 4 showed moderate inhibitory effect on MCF-7 with IC50 values of 63.5, 59.4, and 52.7 μg/mL, respectively, while the other compounds exhibited no effect (IC50 values > 100 μg/mL). Further investigation using HT29, LU-1, HL-60, KB, Hep G2, and SK-Mel2 cancer cell lines showed the moderate cytotoxic activity of compound 3 (IC50 values ranging from 51.7 to 78.3 μg/mL) to all cells, while compound 4 showed selective effect only against HL-60 cells (IC50 61.5 μg/mL). This is the first report of cytotoxic activity of pomolic acid 3β-acetate (3) toward all tested cancer cell lines, and also the first report of cytotoxicity of rotungenic acid (4) against LU-1, HL-60, KB, Hep G2, and SK-Mel2 cancer cell lines. The methanol extract of chaga mushroom { Inonotus obliquus (Ach. ex Pers.) Pilát} exhibited the strongest cytotoxic effects against HL-60 and LU-1 (32.2 and 38.0 μg/mL, respectively), and modest cytotoxic effects against SW480 (41.3 μg/mL), HepG2 (51.3 μg/mL), KB (57.0 μg/mL), and LNCaP (57.7 μg/mL). We conclude that compounds 3 and 4 from H. pilulifera may be useful in further investigation for anticancer agent discovery and chaga could be used as a natural anticancer remedy against promyelocytic leukemia and lung adenocarcinoma.
Collapse
Affiliation(s)
- Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Phu Dinh Quynh Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hung Quoc Vo
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thao Thi Do
- Institute of Biotechnology, The Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
27
|
Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018; 9:29259-29274. [PMID: 30018750 PMCID: PMC6044372 DOI: 10.18632/oncotarget.25660] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Medicinal mushrooms have been used throughout the history of mankind for treatment of various diseases including cancer. Nowadays they have been intensively studied in order to reveal the chemical nature and mechanisms of action of their biomedical capacity. Targeted treatment of cancer, non-harmful for healthy tissues, has become a desired goal in recent decades and compounds of fungal origin provide a vast reservoir of potential innovational drugs. Here, on example of four mushrooms common for use in Asian and Far Eastern folk medicine we demonstrate the complex and multilevel nature of their anticancer potential, basing upon different groups of compounds that can simultaneously target diverse biological processes relevant for cancer treatment, focusing on targeted approaches specific to malignant tissues. We show that some aspects of fungotherapy of tumors are studied relatively well, while others are still waiting to be fully unraveled. We also pay attention to the cancer types that are especially susceptible to the fungal treatments.
Collapse
Affiliation(s)
- Artem Blagodatski
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation.,Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Margarita Yatsunskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Valeriia Mikhailova
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladlena Tiasto
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladimir L Katanaev
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation.,Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Tao J, Li Y, Li S, Li HB. Plant foods for the prevention and management of colon cancer. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Tsai CC, Li YS, Lin PP. Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma’s HCT-116 cell line. Biomed Pharmacother 2017; 96:1119-1126. [DOI: 10.1016/j.biopha.2017.11.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
|
30
|
Staniszewska J, Szymański M, Ignatowicz E. Antitumor and immunomodulatory activity of Inonotus obliquus. HERBA POLONICA 2017. [DOI: 10.1515/hepo-2017-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Summary
The article presents the antitumor and immunomodulatory activity of compounds and extracts from Inonotus obliquus. Polysaccharides isolated from sclerotium have a direct antitumor effect due to protein synthesis inhibition in tumor cells. Polysaccharides derived from the mycelium function by activating the immune system. Due to the limited toxicity of these substances, both extracts as well as isolated and purified chemicals may be a good alternative to current chemotherapy and play a role in cancer prevention. In vitro experiments have shown the inhibition of inflammation with the influence of action of I. obliquus extracts; however, in vivo experiments on animals implanted with tumor cells of different types have shown the activation of the host immune system. This led to decrease in tumor mass and prolonged survival. The immunomodulatory mechanism of action is complex and it seems that stimulation of macrophages and induction of apoptosis in cancer cells is of great importance.
Collapse
Affiliation(s)
- Justyna Staniszewska
- Department of Pharmacognosy Poznan , University of Medical Sciences , Święcickiego 4, 60–781 Poznań , Poland
| | - Marcin Szymański
- Department of Pharmacognosy Poznan , University of Medical Sciences , Święcickiego 4, 60–781 Poznań , Poland
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry , Poznan University of Medical Sciences , Święcickiego 4, 60–781 Poznań , Poland
| |
Collapse
|
31
|
Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon 2016; 2:e00111. [PMID: 27441282 PMCID: PMC4946216 DOI: 10.1016/j.heliyon.2016.e00111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
AIMS Cancer is a leading cause of morbidity and mortality worldwide; therefore, effective measures for cancer prevention and treatment are in constant demand. The extracts of Inonotus obliquus (Chaga mushroom) demonstrate potent anti-tumor activities and have been used to treat cancer in several countries; however, the actual effect and underlying mechanisms are still unclear. In the present study, we aimed to investigate the effects of continuous intake of aqueous extract from I. obliquus on tumor suppression. MAIN METHODS Anticancer activity of the I. obliquus extract was examined in mouse models of Lewis lung carcinoma growth and spontaneous metastasis after 3 weeks of continuous extract intake at the dose of 6 mg/kg/day, which corresponded to that ingested daily with Chaga infusion in Japan. KEY FINDINGS The extract of I. obliquus caused significant tumor suppressive effects in both models. Thus, in tumor-bearing mice, 60% tumor reduction was observed, while in metastatic mice, the number of nodules decreased by 25% compared to the control group. Moreover, I. obliquus extract-treated mice demonstrated the increase in tumor agglomeration and inhibition of vascularization. Interestingly, I. obliquus intake decreased body weight in middle-aged mice and increased body temperature in response to light-dark switching in mature adult mice. Furthermore, I. obliquus prevented temperature drop in mice after tumor implantation. SIGNIFICANCE Our findings suggest that the I. obliquus extract could be used as a natural remedy for cancer suppression by promoting energy metabolism.
Collapse
|
32
|
Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 2016; 424:30-41. [DOI: 10.1016/j.carres.2016.02.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
|
33
|
Lee HS, Kim EJ, Kim SH. Ethanol extract of Innotus obliquus (Chaga mushroom) induces G1 cell cycle arrest in HT-29 human colon cancer cells. Nutr Res Pract 2015; 9:111-6. [PMID: 25861415 PMCID: PMC4388940 DOI: 10.4162/nrp.2015.9.2.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were cultured in the presence of 2.5 - 10 µg/mL of EEIO, and analyzed the cell cycle arrest by flow cytometry and the cell cycle controlling protein expression by Western blotting. RESULTS Treatment cells with 2.5 - 10 µg/mL of EEIO reduced viable HT-29 cell numbers and DNA synthesis, increased the percentage of cells in G1 phase, decreased protein expression of CDK2, CDK4, and cyclin D1, increased expression of p21, p27, and p53, and inhibited phosphorylation of Rb and E2F1 expression. Among I. obliquus fractions, fraction 2 (fractionated by dichloromethane from EEIO) showed the same effect as EEIO treatment on cell proliferation and cell cycle-related protein levels. CONCLUSIONS These results demonstrate that fraction 2 is the major fraction that induces G1 arrest and inhibits cell proliferation, suggesting I. obliquus could be used as a natural anti-cancer ingredient in the food and/or pharmaceutical industry.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science and Nutrition, Dongseo University, Busan 617-716, Korea
| | - Eun Ji Kim
- Research Institute, Adbiotech Co. Ltd., Gangwon 200-957, Korea
| | - Sun Hyo Kim
- Department of Technology and Home Economics Education, Kongju National University, 56 Kongjudaehak-ro, Chungnam 314-701, Korea
| |
Collapse
|
34
|
Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus. Int J Biol Macromol 2015; 74:507-14. [DOI: 10.1016/j.ijbiomac.2014.12.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022]
|
35
|
|
36
|
Liu B, Zhang S, Zhong M, Sha L, Lun Y, Zhang W, Wang X, Li X, Cao J, Ning A, Huang M. From Inducing Autophagy to Programmed Cell Death? The PI3K Functional Domain Study of Protein Latcripin-1 from Lentinula edodes C91-3. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9399-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Sak K, Jürisoo K, Raal A. Estonian folk traditional experiences on natural anticancer remedies: from past to the future. PHARMACEUTICAL BIOLOGY 2014; 52:855-866. [PMID: 24920231 DOI: 10.3109/13880209.2013.871641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Despite diagnostic and therapeutic advancements, the burden of cancer is still increasing worldwide. Toxicity of current chemotherapeutics to normal cells and their resistance to tumor cells highlights the urgent need for new drugs with minimal adverse side effects. The use of natural anticancer agents has entered into the area of cancer research and increased efforts are being made to isolate bioactive products from medicinal plants. OBJECTIVE To lead the search for plants with potential cytotoxic activity, ethnopharmacological knowledge can give a great contribution. Therefore, the attention of this review is devoted to the natural remedies traditionally used for the cancer treatment by Estonian people over a period of almost 150 years. METHODS Two massive databases, the first one stored in the Estonian Folklore Archives and the second one in the electronic database HERBA ( http://herba.folklore.ee/ ), containing altogether more than 30 000 ethnomedicinal texts were systematically reviewed to compile data about the Estonian folk traditional experiences on natural anticancer remedies. RESULTS AND CONCLUSION As a result, 44 different plants with potential anticancer properties were elicited, 5 of which [Angelica sylvestris L. (Apiaceae), Anthemis tinctoria L. (Asteraceae), Pinus sylvestris L. (Pinaceae), Sorbus aucuparia L. (Rosaceae), and Prunus padus L. (Rosaceae)] have not been previously described with respect to their tumoricidal activities in the scientific literature, suggesting thus the potential herbal materials for further investigations of natural anticancer compounds.
Collapse
|
38
|
Song FQ, Liu Y, Kong XS, Chang W, Song G. Progress on understanding the anticancer mechanisms of medicinal mushroom: inonotus obliquus. Asian Pac J Cancer Prev 2014; 14:1571-8. [PMID: 23679238 DOI: 10.7314/apjcp.2013.14.3.1571] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.
Collapse
Affiliation(s)
- Fu-Qiang Song
- Key Laboratory of Microbiology, Life Science College, Heilongjiang University, Harbin, China.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Lau BF, Abdullah N, Aminudin N, Lee HB. Chemical composition and cellular toxicity of ethnobotanical-based hot and cold aqueous preparations of the tiger's milk mushroom (Lignosus rhinocerotis). JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:252-262. [PMID: 23993912 DOI: 10.1016/j.jep.2013.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/04/2013] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The sclerotium of the "tiger's milk mushroom" (Lignosus rhinocerotis) is used as tonic and folk medicine for the treatment of cancer, fever, cough and asthma by the local and indigenous communities. It is traditionally prepared by either boiling or maceration-like methods; however, there is no attempt to understand how different processing methods might affect their efficacies as anticancer agents. AIM OF THE STUDY This investigation was undertaken to evaluate the cytotoxicity of the hot and cold aqueous extracts of Lignosus rhinocerotis and to deduce the nature of the chemical component(s) that might be responsible for differential cellular toxicity of the extracts. MATERIALS AND METHODS The hot (LR-HA) and cold (LR-CA) aqueous extracts of the sclerotium of Lignosus rhinocerotis were prepared. The levels of bioactive components in the extracts were determined and chemical profiling was performed using UPLC-ESI-MS, SDS-PAGE and SELDI-TOF MS. Cytotoxicity of LR-HA and LR-CA against a panel of human cancer and normal cell lines was assessed by the MTT and trypan blue exclusion assays. Changes in cell morphology upon treatment with the extracts were observed. The chemical composition and bioactivities data were correlated to explain the nature of the cytotoxic component(s). RESULTS LR-HA and LR-CA were particularly abundant in polar components. Both extracts exhibited varying degree of cytotoxicity against the cancer cell lines with LR-CA showed significantly stronger cytotoxicity (IC50: 37-355 µg/ml) than LR-HA (IC50>500 µg/ml); however, LR-CA lacked selectivity in that it also has cytotoxic effect on the normal cell lines. Based on the results of protein profiling of heat-treated LR-CA (40-100°C) coupled to the MTT assay, the cytotoxic component(s) in LR-CA were deduced to be thermo-labile, water-soluble protein/peptide(s). CONCLUSION Our findings have shown that the use of different preparation methods (hot and cold aqueous extraction) for Lignosus rhinocerotis has resulted in extracts with distinctively different cellular toxicity in which the cytotoxic constituents were present only in LR-CA.
Collapse
Affiliation(s)
- Beng Fye Lau
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
41
|
Mishra S, Kang JH, Song KH, Park M, Kim DK, Park YJ, Choi C, Kim H, Kim M, Oh S. Inonotus Obliquus Suppresses Proliferation of Colorectal Cancer Cells and Tumor Growth in Mice Models by Downregulation of β-Catenin/NF-κB-Signaling Pathways. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chaga mushroom (Inonotus obliquas) has been used as a folk remedy for several illnesses including gastrointestinal disorders. We recently reported the potent anti-inflammatory effect of chaga extract in experimental colitis. However, its effects on colorectal cancer (CRC) have not been clearly elucidated. We investigated the effects of an aqueous extract of Inonotus obliquus (IOAE) in vitro in HCT116 and DLD1 cell lines and in vivo for adenoma in APCMin/+ mice and colitis-associated colon cancer in AOM/DSS-treated mice. Results show that IOAE suppressed the proliferation of both cell lines, and inhibited the growth of intestinal polyps in APCMin/+ and colon tumors in AOM/DSS-treated mice. IOAE induced mitochondrial intrinsic pathway of apoptosis, autophagy, and S phase cell cycle arrest. IOAE suppressed the expression levels of iNOS and Cox-2 and mRNA levels of pro-inflammatory cytokines (IL-6, IL-1β, TNF-a and IFN-γ) in the intestine of mice models. IOAE suppressed the nuclear levels of β-catenin and inhibited its downstream targets (cyclin D1 and c-Myc) along with CRC oncogene CDK8. IOAE inhibited the expression of NF-κB at cytoplasmic and nuclear levels. Our results demonstrate that IOAE possess potent anti-inflammatory and anti-proliferative properties through downregulation of Wnt/β-catenin and NF-κB pathways. Considering recent anticancer approaches involving natural products with minimal side effects, we advocate that Inonotus obliquus could be a beneficial supplement in prevention of colorectal cancer.
Collapse
Affiliation(s)
- S.K. Mishra
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - J-H. Kang
- Department of Food and Nutrition, Division of Natural Sciences, Chung-Ang University, Ansung, Republic of Korea
- Division of Cancer Biology, National Cancer Center, Goyang-si, Republic of Korea
| | - K-H. Song
- Division of Cancer Biology, National Cancer Center, Goyang-si, Republic of Korea
| | - M.S. Park
- Animal Science Branch, National Cancer Center, Goyang-si, Republic of Korea
| | - D-K. Kim
- Animal Science Branch, National Cancer Center, Goyang-si, Republic of Korea
| | - Y-J. Park
- Animal Science Branch, National Cancer Center, Goyang-si, Republic of Korea
| | - C. Choi
- Department of Food and Nutrition, Division of Natural Sciences, Chung-Ang University, Ansung, Republic of Korea
| | - H.M. Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - M.K. Kim
- Carcinogenesis Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, Goyang-si, Republic of Korea
| | - S.H. Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
42
|
Cha YJ, Alam N, Lee JS, Lee KR, Shim MJ, Lee MW, Kim HY, Shin PG, Cheong JC, Yoo YB, Lee TS. Anticancer and Immunopotentiating Activities of Crude Polysaccharides from Pleurotus nebrodensis on Mouse Sarcoma 180. MYCOBIOLOGY 2012; 40:236-243. [PMID: 23323048 PMCID: PMC3538970 DOI: 10.5941/myco.2012.40.4.236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 11/23/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Pleurotus nebrodensis is an edible and commercially available mushroom in Korea. This study was conducted in order to evaluate the anticancer and immunopotentiating activities of crude polysaccharides, extracted in methanol, neutral saline, and hot water (hereafter referred to as Fr. MeOH, Fr. NaCl, and Fr. HW, respectively) from the fruiting bodies of P. nebrodensis. β-Glucan and protein contents in Fr. MeOH, Fr. NaCl, and Fr. HW extracts of P. nebrodensis ranged from 23.79~36.63 g/100 g and 4.45~6.12 g/100 g, respectively. Crude polysaccharides were not cytotoxic against sarcoma 180, HT-29, NIH3T3, and RAW 264.7 cell lines at a range of 10~2,000 µg/mL. Intraperitoneal injection with crude polysaccharides resulted in a life prolongation effect of 11.76~27.06% in mice previously inoculated with sarcoma 180. Treatment with Fr. NaCl resulted in an increase in the numbers of spleen cells by 1.49 fold at the concentration of 50 µg/mL, compared with control. Fr. HW improved the immuno-potentiating activity of B lymphocytes through an increase in alkaline phosphatase activity by 1.65 fold, compared with control at 200 µg/mL. Maximum production of nitric oxide (14.3 µM) was recorded in the Fr. NaCl fraction at 200 µg/mL. Production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) was significantly higher, compared to control, and IL-6 production was highest, in contrast to TNF-α, IL-1β, and positive control, concanavalin at the tested concentration of the various fractions. Results of the current study suggest that polysaccharides extracted from P. nebrodensis have a strong anticancer effect and may be useful as an ingredient of biopharmaceutical products for treatment of cancer.
Collapse
Affiliation(s)
- Youn Jeong Cha
- Division of Life Sciences, University of Incheon, Incheon 406-840, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Roupas P, Keogh J, Noakes M, Margetts C, Taylor P. The role of edible mushrooms in health: Evaluation of the evidence. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.05.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
44
|
Mishra SK, Kang JH, Kim DK, Oh SH, Kim MK. Orally administered aqueous extract of Inonotus obliquus ameliorates acute inflammation in dextran sulfate sodium (DSS)-induced colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:524-532. [PMID: 22819687 DOI: 10.1016/j.jep.2012.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaga mushroom (Inonotus obliquus) has been used in folk medicine to treat several disorders through its various biological functions. I. obliquus is claimed to produce general immune-potentiating and strengthening, antiinflammatory, and antitumor properties, but its effects on intestinal inflammation (ulcerative colitis) are clearly not understood. AIM OF THE STUDY To determine the effects and mode of action of an aqueous extract of I. obliquus (IOAE) on experimental colitis in mice induced by dextran sulfate sodium (DSS). MATERIALS AND METHODS Female 5-week-C57BL/6 mice were randomized into groups differing in treatment conditions (prevention and treatment) and doses of IOAE (50 and 100mg/kg body weight). Mice were exposed to DSS (2%) in their drinking water over 7 day to induce acute intestinal inflammation. In colon tissues, we evaluated histological changes by hematoxylin and eosin staining, levels of iNOS by immuno-histochemical staining, and neutrophil influx by myeloperoxidase assay. mRNA expression of pro-inflammatory mediators TNF-α, IL-1β, IL-6, and IFN-γ was determined by RT-PCR. RESULTS Histological examinations indicated that IOAE suppressed edema, mucosal damage, and the loss of crypts induced by DSS. IOAE markedly attenuated DSS-induced iNOS levels and myeloperoxidase accumulation in colon tissues, demonstrating its suppressive effect on infiltration of immune cells. In addition, IOAE significantly inhibited mRNA expression of pro-inflammatory cytokines induced by DSS in colon tissues. CONCLUSION Our results suggest anti-inflammatory effect of IOAE at colorectal sites due to down-regulation of the expression of inflammatory mediators. Suppression of TNF-α and iNOS together with IL-1β by IOAE denotes that it might be a useful supplement in the setting of inflammatory bowel disease.
Collapse
Affiliation(s)
- Siddhartha Kumar Mishra
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Management, National Cancer Center, Ilsan-ro 323, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Kim JH, Lee JS, Lee KR, Shim MJ, Lee MW, Shin PG, Cheong JC, Yoo YB, Lee TS. Immunomodulating and Antitumor Activities of Panellus serotinus Polysaccharides. MYCOBIOLOGY 2012; 40:181-8. [PMID: 23115511 PMCID: PMC3483395 DOI: 10.5941/myco.2012.40.3.181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/19/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
This study was initiated in order to investigate the anticancer and immunomodulating activities of crude polysaccharides extracted in methanol, neutral saline, and hot water (hereinafter referred to as Fr. MeOH, Fr. NaCl, and Fr. HW, respectively) from the fruiting bodies of Panellus serotinus. Content of β-glucan and protein in Fr. MeOH, Fr. NaCl, and Fr. HW extracts of P. serotinus ranged from 22.92~28.52 g/100 g and 3.24~3.68 g/100 g, respectively. In vitro cytotoxicity tests, none of the various fractions of crude polysaccharides were cytotoxic against sarcoma 180, HT-29, NIH3T3, and RAW 264.7 cell lines at the tested concentration. Intraperitoneal injection with crude polysaccharides resulted in a life prolongation effect of 23.53~44.71% in mice previously inoculated with sarcoma 180. Treatment with Fr. HW resulted in an increase in the numbers of spleen cells by 1.3 fold at the concentration of 50 µg/mL compared with control. Treatment with Fr. NaCl resulted in improvement of the immuno-potentiating activity of B lymphocytes by increasing the alkaline phosphatase activity by 1.4 fold, compared with control, at the concentration of 200 µg/mL. Among the three fractions, maximum nitric oxide (13.48 µM) was recorded at 500 µg/mL in Fr. HW. Production of tumor necrosis factor alpha, interleukin-1β, and interleukin-6 was significantly higher, compared to the positive control, concanavalin A, at the tested concentration. Therefore, treatment with crude polysaccharides extracted from the fruiting body of P. serotinus could result in improvement of antitumor activity.
Collapse
Affiliation(s)
- Jeong Hwa Kim
- Division of Life Sciences, University of Incheon, Incheon 406-840, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mansour A, Daba A, Baddour N, El-Saadani M, Aleem E. Schizophyllan inhibits the development of mammary and hepatic carcinomas induced by 7,12 dimethylbenz(α)anthracene and decreases cell proliferation: comparison with tamoxifen. J Cancer Res Clin Oncol 2012; 138:1579-96. [PMID: 22552717 DOI: 10.1007/s00432-012-1224-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Breast cancer is one of the leading causes of cancer mortality among women. Some anticancer compounds have been isolated from mushrooms. The aim of the present work was to study the anticancer effects of schizophyllan (SCH), a β-D: -glucan extracted from the mushroom Schizophyllum commune alone or in combination with tamoxifen (TAM) on 7, 12 Dimethylbenz(α)anthracene (DMBA)-induced carcinomas in mice. METHODS We isolated SCH from S. commune. Female mice received DMBA, SCH, DMBA+SCH, DMBA+TAM or DMBA+TAM+SCH or vehicles. We studied mice survival, tumour incidence, histopathology, oestrogen receptor (ER) expression, cell proliferation by immunohistochemical detection of proliferating cell nuclear antigen (PCNA), apoptosis by TUNEL assay, as well as caspase-3 expression. RESULTS DMBA treatment resulted in mammary and hepatocellular carcinomas (HCC). Both SCH and TAM reduced the incidence of DMBA-induced mammary tumours by 85 and 75 %, respectively, and equally decreased the PCNA labelling index relative to DMBA. TAM treatment increased the incidence of- and PCNA index in HCCs relative to DMBA, while SCH suppressed these effects. TAM was more effective than SCH in the induction of apoptosis in both mammary and hepatic carcinomas. Caspase-3 levels correlated with the apoptotic index in most experimental groups. CONCLUSIONS Only one dose of SCH had similar therapeutic effects against DMBA-induced mammary carcinomas as 4 weeks of TAM treatment. This coupled with the ability of SCH to suppress hepatic lesions associated with TAM treatment provides the rationale for further investigating the combined therapeutic effects of TAM+SCH in preclinical models of ER-positive breast cancer, as well as in liver cancer.
Collapse
Affiliation(s)
- Ahmed Mansour
- Department of Zoology, Division of Molecular Biology, Faculty of Science, Alexandria University, Moharram Bey, Alexandria, 21511, Egypt
| | | | | | | | | |
Collapse
|
47
|
Bhattarai G, Lee YH, Lee NH, Lee IK, Yun BS, Hwang PH, Yi HK. Fomitoside-K from Fomitopsis nigra Induces Apoptosis of Human Oral Squamous Cell Carcinomas (YD-10B) via Mitochondrial Signaling Pathway. Biol Pharm Bull 2012; 35:1711-9. [DOI: 10.1248/bpb.b12-00297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Govinda Bhattarai
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University
| | - Nan-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University
| | - In-Kyoung Lee
- Division of Biotechnology, College of Environmental & Biosource Science, Chonbuk National University
| | - Bong-Sik Yun
- Division of Biotechnology, College of Environmental & Biosource Science, Chonbuk National University
| | - Pyong-Han Hwang
- Department of Pediatrics, School of Medicine, Chonbuk National University
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 Program, School of Dentistry, Chonbuk National University
| |
Collapse
|
48
|
Potential agents for cancer and obesity treatment with herbal medicines from the green garden. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0215-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Jayasooriya RGPT, Kang CH, Seo MJ, Choi YH, Jeong YK, Kim GY. Exopolysaccharide of Laetiporus sulphureus var. miniatus downregulates LPS-induced production of NO, PGE₂, and TNF-α in BV2 microglia cells via suppression of the NF-κB pathway. Food Chem Toxicol 2011; 49:2758-64. [PMID: 21843581 DOI: 10.1016/j.fct.2011.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 11/18/2022]
Abstract
Our previous study showed that the exopolysaccharide (EPS) of Laetiporus sulphureus var. miniatus was well characterized and prevented cell damage in streptozotocin-induced apoptosis. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Therefore, we attempted in this study to determine whether EPS induces a significant inhibition of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia cells. Our results showed that EPS significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor-α (TNF-α), without any significant cytotoxicity. EPS also downregulated mRNA and protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-induced BV2 microglia cells. Our data also revealed that EPS treatment significantly reduced translocation of nuclear factor-κB (NF-κB) subunit p65 and its DNA-binding activity in LPS-stimulated BV2 microglia cells. Furthermore, we confirmed by using proteasome inhibitor N-acetyl-l-cysteine (NAC), that the inhibition of NF-κB activity influenced the expression of pro-inflammatory genes in LPS-induced BV2 microglia cells. As expected, NAC suppressed the expression of iNOS, COX-2, and TNF-α by blocking proteasome-mediated degradation. Taken together, our data indicate that EPS inhibits the expression of pro-inflammatory mediators by suppressing NF-κB activity.
Collapse
Affiliation(s)
- R G P T Jayasooriya
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Won DP, Lee JS, Kwon DS, Lee KE, Shin WC, Hong EK. Immunostimulating activity by polysaccharides isolated from fruiting body of Inonotus obliquus. Mol Cells 2011; 31:165-73. [PMID: 21191814 PMCID: PMC3932689 DOI: 10.1007/s10059-011-0022-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/27/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated the immunostimulating activity of polysaccharides isolated from fruiting body of Inonotus obliquus (PFIO). Additionally, the signaling pathway of PFIO-mediated macrophage activation was investigated in RAW264.7 macrophage cells. We found that PFIO was capable of promoting NO/ROS production, TNF-α secretion and phagocytic uptake in macrophages, as well as cell proliferation, comitogenic effect and IFN-γ/IL-4 secretion in mouse splenocytes. PFIO was able to induce the phosphorylation of three MAPKs as well as the nuclear translocation of NF-κB, resulting in activation of RAW264.7 macrophages. PFIO also induced the inhibition of TNF-α secretion by anti-TLR2 mAb, consequently, PFIO might be involved in TNF-α secretion via the TLR2 receptor. In addition, our results showed that oral administration of PFIO suppressed in vivo growth of melanoma tumor in tumorbearing mice. In conclusion, our experiments presented that PFIO effectively promotes macrophage activation through the MAPK and NF-κB signaling pathways, suggesting that PFIO may potentially regulate the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Eock Kee Hong
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|