1
|
Chinain M, Gatti Howell C, Roué M, Ung A, Henry K, Revel T, Cruchet P, Viallon J, Darius HT. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. HARMFUL ALGAE 2023; 129:102525. [PMID: 37951623 DOI: 10.1016/j.hal.2023.102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023]
Abstract
Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.
Collapse
Affiliation(s)
- M Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia.
| | - C Gatti Howell
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - M Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 6570, Faa'a, Tahiti 98702, French Polynesia
| | - A Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - K Henry
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - T Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - P Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - J Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - H T Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| |
Collapse
|
2
|
Chassagne F, Butaud JF, Ho R, Conte E, Hnawia É, Raharivelomanana P. Traditional medical practices for children in five islands from the Society archipelago (French Polynesia). JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:44. [PMID: 37853377 PMCID: PMC10585756 DOI: 10.1186/s13002-023-00617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Traditional Polynesian medicine for children has been poorly documented, and few data are available on their efficacy and safety. In this context, the aim of this study was to identify traditional practices used for treating children and then assess the efficacy and safety of the most cited remedies by reviewing the literature. METHODS In 2022, a semi-structured survey was carried out on five islands from the Society archipelago (Bora Bora, Huahine, Moorea, Raiatea, and Tahiti). A total of 86 participants were interviewed including 19 experts in herbalism. A thorough literature review was performed on the most cited plant species to gather the relevant ethnobotanical, pharmacological, and clinical data of each remedy. RESULTS Participants mentioned using 469 remedies to treat 69 health disorders. The most represented health categories were digestive system, skin disorders, infectious diseases, and respiratory system. A total of 67 plant species (representing 731 use-reports) were mentioned and Annona muricata, Gardenia taitensis, and Hibiscus rosa-sinensis were the main plants reported. Regarding the safety of cited remedies, one plant (Microsorum grossum) showed high risk of toxicity, and its use should be avoided in infants and children. CONCLUSION Our survey confirms the importance of traditional medical practices for children in the Society Islands. A lack of data in children for most cited remedies demonstrate the need for more pharmacological and toxicological research on Polynesian medicinal plants. Finally, the potential risk of toxicity for some cited plant species reported calls for a better information of traditional medicine users and healers.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche pour le Développement (IRD), Toulouse, France.
- Maison des Sciences de l'Homme du Pacifique (UAR 2503), Université de la Polynésie Française / Centre National de la Recherche Scientifique, Tahiti, French Polynesia.
| | - Jean-François Butaud
- Correspondant du Muséum National d'Histoire Naturelle (PatriNat), Paris & Consultant en foresterie et botanique polynesienne, Tahiti, French Polynesia
| | - Raimana Ho
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, Faaa, Tahiti, French Polynesia
| | - Eric Conte
- Maison des Sciences de l'Homme du Pacifique (UAR 2503), Université de la Polynésie Française / Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Édouard Hnawia
- UMR 152 PharmaDev, Institut de Recherche pour le Développement (IRD), Nouméa, New Caledonia
| | - Phila Raharivelomanana
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, Faaa, Tahiti, French Polynesia
| |
Collapse
|
3
|
Local and Traditional Ecological Knowledge of Fish Poisoning in Fiji. Toxins (Basel) 2023; 15:toxins15030223. [PMID: 36977114 PMCID: PMC10051453 DOI: 10.3390/toxins15030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Fish poisoning (FP) affects human health, trade and livelihood in Fiji, where management has depended mainly on traditional ecological knowledge (TEK). This paper investigated and documented this TEK through a 2-day stakeholder workshop, group consultation, in-depth interviews, field observations, and analyses of survey data from the Ministry of Fisheries, Fiji. Six TEK topics were identified and classified as preventative and treatment options. The preventive approach involves identifying toxic reef fishes, the spawning season of edible seaworms, hotspot areas of toxic fishes, folk tests, and locating and removing toxic organs. For example, 34 reef fish species were identified as toxic. The FP season was associated with the spawning of balolo (edible seaworm) and the warmer months of October to April (cyclone seasons). Two well-known toxic hotspots associated with an abundance of bulewa (soft coral) were identified. Folk tests and locating and removing toxic fish organs are also practised for moray eels and pufferfish. At the same time, various locally available herbal plants are used to treat FP as the second line of defence. The TEK collated in this work can help local authorities better identify the sources of toxicity, and applying TEK preventive measures could stem the tide of fish poisoning in Fiji.
Collapse
|
4
|
Chassagne F, Butaud JF, Torrente F, Conte E, Ho R, Raharivelomanana P. Polynesian medicine used to treat diarrhea and ciguatera: An ethnobotanical survey in six islands from French Polynesia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115186. [PMID: 35292376 DOI: 10.1016/j.jep.2022.115186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In French Polynesia, many pathologies common or endemic to the territory cause diarrhea. This is the case for rotavirus gastroenteritis, salmonella food poisoning, ingestion of water contaminated by bacteria, and ciguatera. To treat these ailments, the population may employ traditional medicine for cultural reasons, geographical isolation, and poor health coverage. Polynesian remedies are often used without medical consultation and there is no data on their benefit-risk balance. A few ethnobotanical studies have been carried out in order to identify the traditional remedies used for various ailments, but few studies have focused on gastrointestinal pathologies. In this context, an ethnobotanical survey was carried out to identify treatments used for diarrhea and ciguatera, inventory the plants used, better understand the local representation of these remedies, and provide efficacy and safety data on these uses. MATERIALS AND METHODS From February to April 2021, a semi-structured survey was conducted on six islands in French Polynesia, including one island in the Windward Islands archipelago (Tahiti), three islands in the Marquesas archipelago (Hiva Oa, Nuku Hiva, Tahuata), and two islands in the Leeward Islands archipelago (Raiatea, Tahaa). A total of 133 people was interviewed including 34 specialists (of which 29 experts in herbalism). RESULTS These people mentioned the use of 27 plants for the treatment of diarrhea, and 24 for the treatment of ciguatera. Citrus aurantiifolia, Psidium guajava and Cordyline fruticosa were the three most cited plant species used for treating diarrhea, while Cocos nucifera, Punica granatum and Barringtonia asiatica were the most cited for ciguatera. A large majority of plants are widespread and introduced plants, which is congruent with the history of Polynesian people. While some plants are well known for similar uses (e.g. Psidium guajava for diarrhea, Heliotropium arboreum for ciguatera), others are less well known and may present toxicity risks (e.g. Barringtonia asiatica for ciguatera). CONCLUSION Traditional Polynesian medicine is an integral part of the local culture so important to be preserved and valued. However, more pharmacological and toxicological studies are still needed to determine the benefit-risk balance of some of these remedies and to allow their official integration into the Polynesian health system.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France; Maison des Sciences de l'Homme du Pacifique (USR 2003), Université de la Polynésie Française/Centre National de la Recherche Scientifique, Tahiti, French Polynesia.
| | | | - Frédéric Torrente
- Maison des Sciences de l'Homme du Pacifique (USR 2003), Université de la Polynésie Française/Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Eric Conte
- Maison des Sciences de l'Homme du Pacifique (USR 2003), Université de la Polynésie Française/Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Raimana Ho
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, BP 6570, F-98702, Faaa, Tahiti, French Polynesia
| | - Phila Raharivelomanana
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, BP 6570, F-98702, Faaa, Tahiti, French Polynesia
| |
Collapse
|
5
|
Darius HT, Revel T, Cruchet P, Viallon J, Gatti CMI, Sibat M, Hess P, Chinain M. Deep-Water Fish Are Potential Vectors of Ciguatera Poisoning in the Gambier Islands, French Polynesia. Mar Drugs 2021; 19:md19110644. [PMID: 34822515 PMCID: PMC8621427 DOI: 10.3390/md19110644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Ciguatera poisoning (CP) cases linked to the consumption of deep-water fish occurred in 2003 in the Gambier Islands (French Polynesia). In 2004, on the request of two local fishermen, the presence of ciguatoxins (CTXs) was examined in part of their fish catches, i.e., 22 specimens representing five deep-water fish species. Using the radioactive receptor binding assay (rRBA) and mouse bioassay (MBA), significant CTX levels were detected in seven deep-water specimens in Lutjanidae, Serranidae, and Bramidae families. Following additional purification steps on the remaining liposoluble fractions for 13 of these samples (kept at -20 °C), these latter were reanalyzed in 2018 with improved protocols of the neuroblastoma cell-based assay (CBA-N2a) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Using the CBA-N2a, the highest CTX-like content found in a specimen of Eumegistus illustris (Bramidae) was 2.94 ± 0.27 µg CTX1B eq. kg-1. Its toxin profile consisted of 52-epi-54-deoxyCTX1B, CTX1B, and 54-deoxyCTX1B, as assessed by LC-MS/MS. This is the first study demonstrating that deep-water fish are potential ciguatera vectors and highlighting the importance of a systematic monitoring of CTXs in all exploited fish species, especially in ciguatera hotspots, including deep-water fish, which constitute a significant portion of the commercial deep-sea fisheries in many Asian-Pacific countries.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Clémence Mahana iti Gatti
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| | - Manoëlla Sibat
- Ifremer, DYNECO, Laboratoire Phycotoxines, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Philipp Hess
- Ifremer, DYNECO, Laboratoire Phycotoxines, F-44000 Nantes, France; (M.S.); (P.H.)
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, University of French Polynesia), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (T.R.); (P.C.); (J.V.); (C.M.i.G.); (M.C.)
| |
Collapse
|
6
|
Leite IDP, Sdiri K, Taylor A, Viallon J, Gharbia HB, Mafra Júnior LL, Swarzenski P, Oberhaensli F, Darius HT, Chinain M, Bottein MYD. Experimental Evidence of Ciguatoxin Accumulation and Depuration in Carnivorous Lionfish. Toxins (Basel) 2021; 13:toxins13080564. [PMID: 34437435 PMCID: PMC8402466 DOI: 10.3390/toxins13080564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Ciguatera poisoning is a food intoxication associated with the consumption of fish or shellfish contaminated, through trophic transfer, with ciguatoxins (CTXs). In this study, we developed an experimental model to assess the trophic transfer of CTXs from herbivorous parrotfish, Chlorurus microrhinos, to carnivorous lionfish, Pterois volitans. During a 6-week period, juvenile lionfish were fed naturally contaminated parrotfish fillets at a daily dose of 0.11 or 0.035 ng CTX3C equiv. g−1, as measured by the radioligand-receptor binding assay (r-RBA) or neuroblastoma cell-based assay (CBA-N2a), respectively. During an additional 6-week depuration period, the remaining fish were fed a CTX-free diet. Using r-RBA, no CTXs were detectable in muscular tissues, whereas CTXs were measured in the livers of two out of nine fish sampled during exposure, and in four out of eight fish sampled during depuration. Timepoint pooled liver samples, as analyzed by CBA-N2a, confirmed the accumulation of CTXs in liver tissues, reaching 0.89 ng CTX3C equiv. g−1 after 41 days of exposure, followed by slow toxin elimination, with 0.37 ng CTX3C equiv. g−1 measured after the 6-week depuration. These preliminary results, which need to be pursued in adult lionfish, strengthen our knowledge on CTX transfer and kinetics along the food web.
Collapse
Affiliation(s)
- Isabel do Prado Leite
- Center for Marine Studies, Federal University of Paraná. Av. Beira-mar, s/n, Pontal do Paraná P.O. Box 61, Brazil;
- Correspondence: (I.d.P.L.); (M.-Y.D.B.)
| | - Khalil Sdiri
- Université Côte d’Azur, CNRS, ECOSEAS, UMR7035, Parc Valrose, CEDEX 2, 06103 Nice, France;
| | - Angus Taylor
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; (A.T.); (P.S.); (F.O.)
| | - Jérôme Viallon
- Laboratory of Marine Biotoxins, Institut Louis Malardé, UMR EIO (IFREMER, IRD, ILM, UPF), P.O. Box 30 Papeete, Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Hela Ben Gharbia
- MMS Laboratory (EA 2160), Sciences and Techniques Faculty, Le Mans University, Avenue Olivier Messiaen, 72085 Le Mans, France;
| | - Luiz Laureno Mafra Júnior
- Center for Marine Studies, Federal University of Paraná. Av. Beira-mar, s/n, Pontal do Paraná P.O. Box 61, Brazil;
- Visiting Scientist Ifremer, Laboratoire Phycotoxines, Rue de I’lle d’Yeu, 44311 Nantes, France
| | - Peter Swarzenski
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; (A.T.); (P.S.); (F.O.)
| | - François Oberhaensli
- Environment Laboratories, Department of Nuclear Science and Application, International Atomic Energy Agency, 4 Quai Antoine 1er, 98000 Monaco, Monaco; (A.T.); (P.S.); (F.O.)
| | - Hélène Taiana Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé, UMR EIO (IFREMER, IRD, ILM, UPF), P.O. Box 30 Papeete, Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Mireille Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé, UMR EIO (IFREMER, IRD, ILM, UPF), P.O. Box 30 Papeete, Tahiti, French Polynesia; (J.V.); (H.T.D.); (M.C.)
| | - Marie-Yasmine Dechraoui Bottein
- Université Côte d’Azur, CNRS, ECOSEAS, UMR7035, Parc Valrose, CEDEX 2, 06103 Nice, France;
- Correspondence: (I.d.P.L.); (M.-Y.D.B.)
| |
Collapse
|
7
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
8
|
L’Herondelle K, Talagas M, Mignen O, Misery L, Le Garrec R. Neurological Disturbances of Ciguatera Poisoning: Clinical Features and Pathophysiological Basis. Cells 2020; 9:E2291. [PMID: 33066435 PMCID: PMC7602189 DOI: 10.3390/cells9102291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ciguatera fish poisoning (CFP), the most prevalent seafood poisoning worldwide, is caused by the consumption of tropical and subtropical fish contaminated with potent neurotoxins called ciguatoxins (CTXs). Ciguatera is a complex clinical syndrome in which peripheral neurological signs predominate in the acute phase of the intoxication but also persist or reoccur long afterward. Their recognition is of particular importance in establishing the diagnosis, which is clinically-based and can be a challenge for physicians unfamiliar with CFP. To date, no specific treatment exists. Physiopathologically, the primary targets of CTXs are well identified, as are the secondary events that may contribute to CFP symptomatology. This review describes the clinical features, focusing on the sensory disturbances, and then reports on the neuronal targets and effects of CTXs, as well as the neurophysiological and histological studies that have contributed to existing knowledge of CFP neuropathophysiology at the molecular, neurocellular and nerve levels.
Collapse
Affiliation(s)
- Killian L’Herondelle
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| | - Matthieu Talagas
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Olivier Mignen
- University of Brest, School of Medicine, INSERM U1227, Lymphocytes B et auto-immunité, F-29200 Brest, France;
| | - Laurent Misery
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaele Le Garrec
- University of Brest, School of Medicine, Laboratoire Interactions Epithéliums-Neurones (Univ Brest, LIEN), F-29200 Brest, France; (K.L.); (M.T.); (L.M.)
| |
Collapse
|
9
|
Chinain M, Gatti C, Roué M, Darius H. Ciguatera poisoning in French Polynesia: insights into the novel trends of an ancient disease. New Microbes New Infect 2019; 31:100565. [PMID: 31312457 PMCID: PMC6610707 DOI: 10.1016/j.nmni.2019.100565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 01/19/2023] Open
Abstract
Ciguatera is a non-bacterial seafood poisoning highly prevalent in French Polynesia where it constitutes a major health issue and a major threat to food sustainability and food security for local populations. Ciguatera results from the bioaccumulation in marine food webs of toxins known as ciguatoxins, originating from benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera is characterized by a complex array of gastrointestinal, neurological and cardiovascular symptoms. The effective management of patients is significantly hampered by the occurrence of atypical forms and/or chronic sequelae in some patients, and the lack of both a confirmatory diagnosis test and a specific antidote. In addition, recent findings have outlined the implication of novel species of the causative organisms as well as new vectors, namely marine invertebrates, in ciguatera outbreaks. Another novel trend relates to the geographical expansion of this disease to previously unaffected areas, not only in certain island groups of French Polynesia but also in temperate regions worldwide, as a likely consequence of the effects of climate change.
Collapse
Affiliation(s)
- M. Chinain
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR 241-EIO, Papeete, Tahiti, French Polynesia
| | - C.M. Gatti
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR 241-EIO, Papeete, Tahiti, French Polynesia
| | - M. Roué
- Institut de Recherche pour le Développement—UMR 241-EIO, Pirae, Tahiti, French Polynesia
| | - H.T. Darius
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR 241-EIO, Papeete, Tahiti, French Polynesia
| |
Collapse
|
10
|
Gatti CMI, Lonati D, Darius HT, Zancan A, Roué M, Schicchi A, Locatelli CA, Chinain M. Tectus niloticus (Tegulidae, Gastropod) as a Novel Vector of Ciguatera Poisoning: Clinical Characterization and Follow-Up of a Mass Poisoning Event in Nuku Hiva Island (French Polynesia). Toxins (Basel) 2018; 10:E102. [PMID: 29495579 PMCID: PMC5869390 DOI: 10.3390/toxins10030102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/19/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is the most prevalent non-bacterial food-borne form of poisoning in French Polynesia, which results from the consumption of coral reef fish naturally contaminated with ciguatoxins produced by dinoflagellates in the genus Gambierdiscus. Since the early 2000s, this French territory has also witnessed the emergence of atypical forms of ciguatera, known as ciguatera shellfish poisoning (CSP), associated with the consumption of marine invertebrates. In June 2014, nine tourists simultaneously developed a major and persistent poisoning syndrome following the consumption of the gastropod Tectus niloticus collected in Anaho, a secluded bay of Nuku Hiva Island (Marquesas Archipelago, French Polynesia). The unusual nature and severity of this event prompted a multidisciplinary investigation in order to characterize the etiology and document the short/long-term health consequences of this mass-poisoning event. This paper presents the results of clinical investigations based on hospital medical records, medical follow-up conducted six and 20 months post-poisoning, including a case description. This study is the first to describe the medical signature of T. niloticus poisoning in French Polynesia and contributed to alerting local authorities about the potential health hazards associated with the consumption of this gastropod, which is highly prized by local communities in Pacific island countries and territories.
Collapse
Affiliation(s)
- Clémence Mahana Iti Gatti
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Davide Lonati
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Hélène Taiana Darius
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Arturo Zancan
- Subacute Care Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital, 27100 Pavia, Italy.
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD)-UMR 241-EIO, P.O. box 529, 98713 Papeete, Tahiti, French Polynesia.
| | - Azzurra Schicchi
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Carlo Alessandro Locatelli
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Mireille Chinain
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
11
|
Cai YS, Sarotti AM, Gündisch D, Kondratyuk TP, Pezzuto JM, Turkson J, Cao S. Heliotropiumides A and B, new phenolamides with N -carbamoyl putrescine moiety from Heliotropium foertherianum collected in Hawaii and their biological activities. Bioorg Med Chem Lett 2017; 27:4630-4634. [DOI: 10.1016/j.bmcl.2017.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/24/2022]
|
12
|
An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management. Mar Drugs 2017; 15:md15030072. [PMID: 28335428 PMCID: PMC5367029 DOI: 10.3390/md15030072] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
Ciguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world. It causes substantial human health, social, and economic impacts. The illness produces a complex array of gastrointestinal, neurological and neuropsychological, and cardiovascular symptoms, which may last days, weeks, or months. This paper is a general review of CFP including the human health effects of exposure to ciguatoxins (CTXs), diagnosis, human pathophysiology of CFP, treatment, detection of CTXs in fish, epidemiology of the illness, global dimensions, prevention, future directions, and recommendations for clinicians and patients. It updates and expands upon the previous review of CFP published by Friedman et al. (2008) and addresses new insights and relevant emerging global themes such as climate and environmental change, international market issues, and socioeconomic impacts of CFP. It also provides a proposed universal case definition for CFP designed to account for the variability in symptom presentation across different geographic regions. Information that is important but unchanged since the previous review has been reiterated. This article is intended for a broad audience, including resource and fishery managers, commercial and recreational fishers, public health officials, medical professionals, and other interested parties.
Collapse
|
13
|
Marine Natural Products from New Caledonia--A Review. Mar Drugs 2016; 14:md14030058. [PMID: 26999165 PMCID: PMC4820312 DOI: 10.3390/md14030058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/17/2023] Open
Abstract
Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.
Collapse
|
14
|
Mattei C, Vetter I, Eisenblätter A, Krock B, Ebbecke M, Desel H, Zimmermann K. Ciguatera fish poisoning: A first epidemic in Germany highlights an increasing risk for European countries. Toxicon 2014; 91:76-83. [DOI: 10.1016/j.toxicon.2014.10.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
|
15
|
Braidy N, Matin A, Rossi F, Chinain M, Laurent D, Guillemin GJ. Neuroprotective effects of rosmarinic acid on ciguatoxin in primary human neurons. Neurotox Res 2014; 25:226-34. [PMID: 24097334 DOI: 10.1007/s12640-013-9429-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
Ciguatoxin (CTX), is a toxic compound produced by microalgae (dinoflagellate) Gambierdiscus spp., and is bio-accumulated and bio-transformed through the marine food chain causing neurological deficits. To determine the mechanism of CTX-mediated cytotoxicity in human neurons, we measured extracellular lactate dehydrogenase (LDH) activity, intracellular levels of nicotinamide adenine dinucleotide (NAD(+)) and H2AX phosphorylation at serine 139 as a measure for DNA damage in primary cultures of human neurons treated with Pacific (P)-CTX-1B and P-CTX-3C. We found these marine toxins can induce a time and dose-dependent increase in extracellular LDH activity, with a concomitant decline in intracellular NAD(+) levels and increased DNA damage at the concentration range of 5-200 nM. We also showed that pre- and post-treatment with rosmarinic acid (RA), the active constituent of the Heliotropium foertherianum (Boraginaceae) can attenuate CTX-mediated neurotoxicity. These results further highlight the potential of RA in the treatment of CTX-induced neurological deficits.
Collapse
Affiliation(s)
- N Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,
| | | | | | | | | | | |
Collapse
|
16
|
Darius HT, Drescher O, Ponton D, Pawlowiez R, Laurent D, Dewailly E, Chinain M. Use of folk tests to detect ciguateric fish: a scientific evaluation of their effectiveness in Raivavae Island (Australes, French Polynesia). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:550-66. [PMID: 23289800 DOI: 10.1080/19440049.2012.752581] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ciguatera fish poisoning is a seafood intoxication commonly afflicting island communities in the Pacific. These populations, which are strongly dependent on fish resources, have developed over centuries various strategies to decrease the risk of intoxication, including the use of folk tests to detect ciguateric fish. This study aims to evaluate the effectiveness of two folk tests commonly used in Raivavae Island (Australes, French Polynesia): the rigor mortis test (RMT) and the bleeding test (BT). A total of 107 fish were collected in Raivavae Lagoon, among which 80 were tested by five testers using the RMT versus 107 tested by four testers using BT. First, the performance between testers was compared. Second, the efficiency of these tests was compared with toxicity data obtained via the receptor binding assay (RBA) by assessing various parameter's values such as sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV). Comparisons of outcomes between folk tests and RBA analyses were considered: tests used separately or in a parallel versus the series approach by each tester. The overall efficiency of the RMT and BT tests was also evaluated when the judgments of all testers were "pooled". The results demonstrate that efficiencies varied between testers with one showing the best scores in detecting toxic fish: 55% with RMT and 69.2% with BT. BT gave the best results in detecting toxic fish as compared with RMT, giving also better agreement between testers. If high NPV and Se values were to be privileged, the data also suggest that the best way to limit cases of intoxication would be to use RMT and BT tests in a parallel approach. The use of traditional knowledge and a good knowledge of risky versus healthy fishing areas may help reduce the risk of intoxication among communities where ciguatera fish poisoning is highly prevalent.
Collapse
Affiliation(s)
- H T Darius
- Ecosystèmes Insulaires Océaniens, UMR 241, Laboratoire de recherche sur les Microalgues Toxiques, Institut Louis Malardé, Papeete, Tahiti.
| | | | | | | | | | | | | |
Collapse
|
17
|
Rossi F, Jullian V, Pawlowiez R, Kumar-Roiné S, Haddad M, Darius HT, Gaertner-Mazouni N, Chinain M, Laurent D. Protective effect of Heliotropium foertherianum (Boraginaceae) folk remedy and its active compound, rosmarinic acid, against a Pacific ciguatoxin. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:33-40. [PMID: 22706150 DOI: 10.1016/j.jep.2012.05.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senescent leaves of Heliotropium foertherianum Diane & Hilger (Boraginaceae) are traditionally used in the Pacific region to treat Ciguatera Fish Poisoning. This plant contains rosmarinic acid that is known for its multiple biological activities. In the present study, H. foertherianum aqueous extract, rosmarinic acid and its derivatives were evaluated for their capacity to reduce the effect of ciguatoxins. MATERIALS AND METHODS Aqueous extract of H. foertherianum leaves was prepared and studied for its effects against a Pacific ciguatoxin (P-CTX-1B) in the neuroblastoma cell assay and the receptor binding assay. Rosmarinic acid and six derivatives were also evaluated by means of these bioassays. For this purpose, we have developed an improved synthetic route for caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE). RESULTS Both the aqueous extract of H. foertherianum leaves and rosmarinic acid showed inhibitory activities against a Pacific ciguatoxin in the above bioassays. Among all the molecules that were evaluated, rosmarinic acid was the most active compound. CONCLUSION These results confirm further the potential of H. foertherianum in the treatment of Ciguatera Fish Poisoning.
Collapse
Affiliation(s)
- Fanny Rossi
- Université de Toulouse, UPS, UMR-152 (Pharma-Dev), 118, rte de Narbonne, cedex 9, F-31062 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|