2
|
Bioactive C 17 and C 18 Acetylenic Oxylipins from Terrestrial Plants as Potential Lead Compounds for Anticancer Drug Development. Molecules 2020; 25:molecules25112568. [PMID: 32486470 PMCID: PMC7321150 DOI: 10.3390/molecules25112568] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive C17 and C18 acetylenic oxylipins have shown to contribute to the cytotoxic, anti-inflammatory, and potential anticancer properties of terrestrial plants. These acetylenic oxylipins are widely distributed in plants belonging to the families Apiaceae, Araliaceae, and Asteraceae, and have shown to induce cell cycle arrest and/or apoptosis of cancer cells in vitro and to exert a chemopreventive effect on cancer development in vivo. The triple bond functionality of these oxylipins transform them into highly alkylating compounds being reactive to proteins and other biomolecules. This enables them to induce the formation of anti-inflammatory and cytoprotective phase 2 enzymes via activation of the Keap1–Nrf2 signaling pathway, inhibition of proinflammatory peptides and proteins, and/or induction of endoplasmic reticulum stress, which, to some extent, may explain their chemopreventive effects. In addition, these acetylenic oxylipins have shown to act as ligands for the nuclear receptor PPARγ, which play a central role in growth, differentiation, and apoptosis of cancer cells. Bioactive C17 and C18 acetylenic oxylipins appear, therefore, to constitute a group of promising lead compounds for the development of anticancer drugs. In this review, the cytotoxic, anti-inflammatory and anticancer effects of C17 and C18 acetylenic oxylipins from terrestrial plants are presented and their possible mechanisms of action and structural requirements for optimal cytotoxicity are discussed.
Collapse
|
4
|
Oplopanax horridus: Phytochemistry and Pharmacological Diversity and Structure-Activity Relationship on Anticancer Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9186926. [PMID: 30302120 PMCID: PMC6158975 DOI: 10.1155/2018/9186926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Abstract
Oplopanax horridus, well-known as Devil's club, is probably the most important ethnobotanical to most indigenous people living in the Pacific Northwest of North America. Compared with the long history of traditional use and widespread distribution in North America, the study of O. horridus is relatively limited. In the past decade, some exciting advances have been presented on the phytochemistry and pharmacological diversity and structure-activity relationship on anticancer effects of O. horridus. To date, no systematic review has been drafted on the recent advances of O. horridus. In this review, the different phytochemicals in O. horridus are compiled, including purified compounds and volatile components. Animal and in vitro studies are also described and discussed. Especially, the potential structural-activity relationship of polyynes on anticancer effects is highlighted. This review aimed to provide comprehensive and useful information for researching O. horridus and finding potential agents in drug discovery.
Collapse
|
5
|
McGill CM, Tomco PL, Ondrasik RM, Belknap KC, Dwyer GK, Quinlan DJ, Kircher TA, Andam CP, Brown TJ, Claxton DF, Barth BM. Therapeutic effect of Northern Labrador tea extracts for acute myeloid leukemia. Phytother Res 2018; 32:1636-1641. [PMID: 29701283 PMCID: PMC7992109 DOI: 10.1002/ptr.6091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that is one of the more common pediatric malignancies in addition to occurring with high incidence in the aging population. Unfortunately, these patient groups are quite sensitive to toxicity from chemotherapy. Northern Labrador tea, or Rhododendron tomentosum Harmaja (a.k.a. Ledum palustre subsp. decumbens) or "tundra tea," is a noteworthy medicinal plant used by indigenous peoples in Alaska, Canada, and Greenland to treat a diversity of ailments. However, laboratory investigations of Northern Labrador tea, and other Labrador tea family members, as botanical sources for anticancer compounds have been limited. Utilizing an AML cell line in both in vitro and in vivo studies, as well as in vitro studies using primary human AML patient samples, this study demonstrated for the first time that Northern Labrador tea extracts can exert anti-AML activity and that this may be attributed to ursolic acid as a constituent component. Therefore, this medicinal herb holds the potential to serve as a source for further drug discovery efforts to isolate novel anti-AML compounds.
Collapse
Affiliation(s)
- Colin M. McGill
- Department of Chemistry, University of Alaska Anchorage,
Anchorage, AK 99508 USA
| | - Patrick L. Tomco
- Department of Chemistry, University of Alaska Anchorage,
Anchorage, AK 99508 USA
| | - Regina M. Ondrasik
- Department of Medicine, Division of Hematology and
Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine,
Hershey, PA 17033 USA
| | - Kaitlyn C. Belknap
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham, NH 03824 USA
| | - Gaelen K. Dwyer
- Department of Chemistry, University of Alaska Anchorage,
Anchorage, AK 99508 USA
| | - Daniel J. Quinlan
- Department of Chemistry, University of Alaska Anchorage,
Anchorage, AK 99508 USA
| | - Thomas A. Kircher
- Department of Chemistry, University of Alaska Anchorage,
Anchorage, AK 99508 USA
| | - Cheryl P. Andam
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham, NH 03824 USA
| | - Timothy J. Brown
- Department of Medicine, Division of Hematology and
Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine,
Hershey, PA 17033 USA
| | - David F. Claxton
- Department of Medicine, Division of Hematology and
Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine,
Hershey, PA 17033 USA
| | - Brian M. Barth
- Department of Medicine, Division of Hematology and
Oncology, Penn State Hershey Cancer Institute, Penn State College of Medicine,
Hershey, PA 17033 USA
- Department of Molecular, Cellular and Biomedical Sciences,
University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
6
|
Tan SF, Liu X, Fox TE, Barth BM, Sharma A, Turner SD, Awwad A, Dewey A, Doi K, Spitzer B, Shah MV, Morad SAF, Desai D, Amin S, Zhu J, Liao J, Yun J, Kester M, Claxton DF, Wang HG, Cabot MC, Schuchman EH, Levine RL, Feith DJ, Loughran TP. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget 2018; 7:83208-83222. [PMID: 27825124 PMCID: PMC5347763 DOI: 10.18632/oncotarget.13079] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
There is an urgent unmet need for new therapeutics in acute myeloid leukemia (AML) as standard therapy has not changed in the past three decades and outcome remains poor for most patients. Sphingolipid dysregulation through decreased ceramide levels and elevated sphingosine 1-phosphate (S1P) promotes cancer cell growth and survival. Acid ceramidase (AC) catalyzes ceramide breakdown to sphingosine, the precursor for S1P. We report for the first time that AC is required for AML blast survival. Transcriptome analysis and enzymatic assay show that primary AML cells have high levels of AC expression and activity. Treatment of patient samples and cell lines with AC inhibitor LCL204 reduced viability and induced apoptosis. AC overexpression increased the expression of anti-apoptotic Mcl-1, significantly increased S1P and decreased ceramide. Conversely, LCL204 induced ceramide accumulation and decreased Mcl-1 through post-translational mechanisms. LCL204 treatment significantly increased overall survival of C57BL/6 mice engrafted with leukemic C1498 cells and significantly decreased leukemic burden in NSG mice engrafted with primary human AML cells. Collectively, these studies demonstrate that AC plays a critical role in AML survival through regulation of both sphingolipid levels and Mcl-1. We propose that AC warrants further exploration as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Su-Fern Tan
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xin Liu
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Brian M Barth
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Arati Sharma
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Stephen D Turner
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andy Awwad
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Alden Dewey
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Kenichiro Doi
- Department of Pathology, Osaka City University Medical School, Osaka, Japan
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithun Vinod Shah
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA.,Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Junjia Zhu
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Jason Liao
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Jong Yun
- Penn State Hershey Cancer Institute, Hershey, PA, USA.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Hershey, PA, USA.,Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J Feith
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Thomas P Loughran
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
7
|
Anticancer activities of polyynes from the root bark of Oplopanax horridus and their acetylated derivatives. Molecules 2014; 19:6142-62. [PMID: 24830715 PMCID: PMC6271697 DOI: 10.3390/molecules19056142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 01/13/2023] Open
Abstract
Six polyynes OH-1~6, some of which are occur naturally in acetylated form, had been isolated and identified from the root bark of Oplopanax horridus (Devil’s Club), a natural dietary supplement and medicinal plant in North America. During the evaluation of the polyynes’ potential anticancer activities, sixteen more acetylated derivatives OHR-1~16 have synthesized and their anti-proliferation activity on MCF-7, MDA-MB-231, A549, HepG2 and LO2 cells assayed to elucidate their structure-activity relationships. The results showed that OH-1 ((3S, 8S)-falcarindiol) had the most potent anticancer activity, with IC50 values of 15.3, 23.5, 7.7 and 4.7 μM on MCF-7, A549, HepG2 and MDA-MB-231 cells, respectively. For the primary structure-activity relationship, the anticancer activities of polyynes become weaker if their hydroxyl groups are acetylated, the terminal double bonds transformed into single bonds or they contain one more methylene group in the main skeleton chain.
Collapse
|