1
|
Lee-Martínez SN, Luzardo-Ocampo I, Vergara-Castañeda HA, Vasco-Leal JF, Gaytán-Martínez M, Cuellar-Nuñez ML. Native corn (Zea mays L., cv. 'Elotes Occidentales') polyphenols extract reduced total cholesterol and triglycerides levels, and decreased lipid accumulation in mice fed a high-fat diet. Biomed Pharmacother 2024; 180:117610. [PMID: 39447534 DOI: 10.1016/j.biopha.2024.117610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Obesity is a complex disease with numerous molecular and metabolic implications that could be prevented through proper diet and lifestyle. Native corn is a promissory underutilized plant species containing bioactive compounds that could reduce the impact of obesity. This research aimed to characterize and evaluate the anti-obesogenic effect of a polyphenols-rich extract of native corn ('Elotes Occidentales') in HFD-fed mice. The powdered extract was administered using gelatins to C57BL/6 J mice randomly divided into four groups (n:8/group) for 13 weeks: standard diet (SD) group, HFD group, HFD+200 mg extract/kg body weight (BW), and HFD+400 mg extract/kg BW/day. Ellagic acid, chlorogenic acid, rutin, and kaempferol were the most abundant phenolics (2022.44-4028.43 µg/g). Among the HFD groups, the highest dose of the extracts promoted the lowest BW gain, and fasting triglycerides and cholesterol levels. Moreover, the HFD+400 mg/kg BW group showed the lowest epididymal and subcutaneous adipose tissue weight and adipocytes' diameter and area between the HFD-treated animals. The extract administration prevented hepatic lipid accumulation. Rutin demonstrated the highest in silico binding affinity with proteins from the AMPK pathway (ACACA, SIRT1, and SREBP1) (-6.70 to -8.70 kcal/mol). Results indicated beneficial effects in alleviating obesity-associated parameters in vivo due to bioactive compounds from native maize extracts.
Collapse
Affiliation(s)
- Sarah N Lee-Martínez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Ivan Luzardo-Ocampo
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Col: Tecnológico, Monterrey, 64700 N. L., Mexico; Tecnologico de Monterrey, School of Enginering and Sciences, Av. Gral. Ramon Corona 2514, Zapopan, 45201 Jal., Mexico.
| | - Haydé A Vergara-Castañeda
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México
| | - Jose F Vasco-Leal
- Posgrado de Gestión Tecnológica e Innovación, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro, Qro 76010, México
| | - M Liceth Cuellar-Nuñez
- Advanced Biomedical Research Center, School of Medicine, Universidad Autónoma de Querétaro, Querétaro, Qro 76140, México.
| |
Collapse
|
2
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
3
|
Song J, Jiang Z, Wei X, Zhang Y, Bian B, Wang H, Gao W, Si N, Liu H, Cheng M, Zhao Z, Zhou Y, Zhao H. Integrated transcriptomics and lipidomics investigation of the mechanism underlying the gastrointestinal mucosa damage of Loropetalum chinense (R.Br.) and its representative component. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154758. [PMID: 37001296 DOI: 10.1016/j.phymed.2023.154758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Loropetalum chinensis (R.Br) Oliv (Bhjm), a Chinese folk herbal medicine, was traditionally used in the treatment of wound bleeding and skin ulcers. A new drug named JIMUSAN granules used for gastrosia was developed by our group, and clinical trials have been approved. However, as the principal herb, the material basis and underlying mechanisms of Bhjm in attenuating gastrointestinal mucosa damage (GMD) remain to be systemically illuminated. PURPOSE An integrated strategy was used to explore the therapeutic effects and mechanisms of Bhjm and ellagic acid (EA) on GMD zebrafish, using network pharmacology, transcriptomics, lipidomics, and real-time quantitative PCR (RT-qPCR) verification. METHODS First, network pharmacological analysis was used to infer the major effective constituents and targets of Bhjm. Ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UHPLC-LTQ-Orbitrap HRMS) and ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) were employed to identify the chemical constituents and quantify the different types of constituents. Second, zebrafish model of GMD was established by using 2,4,6-trinitrobenzenesulfonic acid (TNBS) to evaluate the efficacy of Bhjm and EA. The potential mechanism was examined by integrated transcriptomics and lipidomics analysis. Finally, validation tests were implemented using RT-qPCR. RESULTS In this study, targets indentified by network pharmacology were related to inflammation and mucosal damage. Ten representative components that interacted with these targets were simultaneously determined by UHPLC-MS/MS. Sixty four compounds were identified or tentatively characterized, most of which were flavonoids and polyphenols. Bhjm and EA alleviated mucosal damage and reduced inflammation in a TNBS-induced zebrafish GMD model, indicating that EA was the main active compounds. Eight common differentially expressed genes were downregulated by Bhjm and EA, as determined by transcriptomics analysis. Lipidomics analysis confirmed 12 differential lipids, including phosphatidylcholine (PC) and triglyceride (TG). Further network enrichment analysis demonstrated that differential lipid metabolism was regulated by klf4 and hist1h2ba, and were validated by RT-qPCR. CONCLUSION In our study, the chemical profile of Bhjm was clarified. Moreover, the GMD repair effect and the mechanism of Bhjm and EA was comprehensively analyzed for the first time, involving inflammation and lipid metabolism. Collectively, these findings will be significantly helpful for deeply exploring the clinical application value of Bhjm.
Collapse
Affiliation(s)
- Jianfang Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenya Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyuan Liu
- Beijing Gushen Life Health Science and Technology Co., Ltd, Beijing, China
| | - Meng Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Li MT, Liu LL, Zhou Q, Huang LX, Shi YX, Hou JB, Lu HT, Yu B, Chen W, Guo ZY. Phyllanthus Niruri L. Exerts Protective Effects Against the Calcium Oxalate-Induced Renal Injury via Ellgic Acid. Front Pharmacol 2022; 13:891788. [PMID: 36034880 PMCID: PMC9400657 DOI: 10.3389/fphar.2022.891788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Urolithiasis or kidney stones is a common and frequently occurring renal disease; calcium oxalate (CaOx) crystals are responsible for 80% of urolithiasis cases. Phyllanthus niruri L. (PN) has been used to treat urolithiasis. This study aimed to determine the potential protective effects and molecular mechanism of PN on calcium oxalate-induced renal injury.Methods: Microarray data sets were generated from the calcium oxalate-induced renal injury model of HK-2 cells and potential disease-related targets were identified. Network pharmacology was employed to identify drug-related targets of PN and construct the active ingredient-target network. Finally, the putative therapeutic targets and active ingredients of PN were verified in vitro and in vivo.Results: A total of 20 active ingredients in PN, 2,428 drug-related targets, and 127 disease-related targets were identified. According to network pharmacology analysis, HMGCS1, SQLE, and SCD were identified as predicted therapeutic target and ellagic acid (EA) was identified as the active ingredient by molecular docking analysis. The increased expression of SQLE, SCD, and HMGCS1 due to calcium oxalate-induced renal injury in HK-2 cells was found to be significantly inhibited by EA. Immunohistochemical in mice also showed that the levels of SQLE, SCD, and HMGCS1 were remarkably restored after EA treatment.Conclusion: EA is the active ingredient in PN responsible for its protective effects against CaOx-induced renal injury. SQLE, SCD, and HMGCS1 are putative therapeutic targets of EA.
Collapse
Affiliation(s)
- Mao-Ting Li
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lu-Lu Liu
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Zhou
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lin-Xi Huang
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu-Xuan Shi
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie-Bin Hou
- Department of Nephrology, the Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Lu
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Navy Medical University, Shanghai, China
| | - Wei Chen
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wei Chen, ; Zhi-Yong Guo,
| | - Zhi-Yong Guo
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wei Chen, ; Zhi-Yong Guo,
| |
Collapse
|
5
|
Xu Q, Li S, Tang W, Yan J, Wei X, Zhou M, Diao H. The Effect of Ellagic Acid on Hepatic Lipid Metabolism and Antioxidant Activity in Mice. Front Physiol 2021; 12:751501. [PMID: 34690819 PMCID: PMC8529006 DOI: 10.3389/fphys.2021.751501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence has demonstrated that the imbalance of lipid metabolism and antioxidant capacity leads to damage to liver. The present study aimed to investigate the effects of ellagic acid (EA), a phenolic compound, on hepatic lipid metabolism and antioxidant activity in mice. In our study, 24 C57BL/6J mice were divided into three groups: (1) control (CON); (2) basal diet+0.1% EA (EA1); and (3) basal diet+0.3% EA (EA2). After the 14-day experiment, the liver was sampled for analysis. The results showed that 0.3% EA administration increased the liver weight. Total cholesterol and low-density lipoprotein cholesterol activities decreased and high-density lipoprotein cholesterol activity increased by EA supplementation. Meanwhile, dietary supplementation with EA dose-dependently decreased the acetyl-CoA carboxylase protein abundance and increased the phospho-hormone-sensitive lipase, carnitine palmitoyltransferase 1B, and peroxisome proliferator-activated receptor alpha protein abundances. Moreover, EA supplementation reduced the malonaldehyde concentration and increased the superoxide dismutase and catalase concentrations. The protein abundances of phospho-nuclear factor-E2-related factor 2, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1 increased by EA supplementation in a dose-dependent manner. Taken together, EA supplementation promoted the lipid metabolism and antioxidant capacity to maintain the liver health in mice.
Collapse
Affiliation(s)
- Qiuying Xu
- Sichuan Nursing Vocational College, Chengdu, China
| | - Shuwei Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Sichuan Animtech Biology Development Co., Ltd, Chengdu, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Jiayou Yan
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Xiaolan Wei
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Mengjia Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China.,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Feed Co. Ltd, Chengdu, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Academy of Animal Science, Chengdu, China
| |
Collapse
|
6
|
Mitochondrion-Directed Nanoparticles Loaded with a Natural Compound and a microRNA for Promoting Cancer Cell Death via the Modulation of Tumor Metabolism and Mitochondrial Dynamics. Pharmaceutics 2020; 12:pharmaceutics12080756. [PMID: 32796618 PMCID: PMC7464316 DOI: 10.3390/pharmaceutics12080756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction may cause cancer and metabolic syndrome. Ellagic acid (abbreviated as E), a phytochemical, possesses anticancer activity. MicroRNA 125 (miR-125) may regulate metabolism. However, E has low aqueous solubility, and miR-125 is unstable in a biological fluid. Hence, this study aimed to develop nanoparticle formulations for the co-treatment of miR-125 and E. These nanoparticles were modified with one mitochondrion-directed peptide and a tumor-targeted ligand, and their modulating effects on mitochondrial dysfunction, antitumor efficacy, and safety in head and neck cancer (HNC) were evaluated. Results revealed that miR-125- and E-loaded nanoparticles effectively targeted cancer cells and intracellular mitochondria. The co-treatment significantly altered cellular bioenergetics, lipid, and glucose metabolism in human tongue squamous carcinoma SAS cells. This combination therapy also regulated protein expression associated with bioenergenesis and mitochondrial dynamics. These formulations also modulated multiple pathways of tumor metabolism, apoptosis, resistance, and metastasis in SAS cells. In vivo mouse experiments showed that the combined treatment of miR-125 and E nanoparticles exhibited significant hypoglycemic and hypolipidemic effects. The combinatorial therapy of E and miR-125 nanoparticles effectively reduced SAS tumor growth. To our best knowledge, this prospective study provided a basis for combining miRNA with a natural compound in nanoformulations to regulate mitochondrial dysfunction and energy metabolism associated with cancer.
Collapse
|
7
|
Lo YL, Chang CH, Wang CS, Yang MH, Lin AMY, Hong CJ, Tseng WH. PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo- and gene therapies for head and neck cancer. Am J Cancer Res 2020; 10:6695-6714. [PMID: 32550898 PMCID: PMC7295054 DOI: 10.7150/thno.45164] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Head and neck cancer (HNC) is a major cause of morbidity and mortality and has a poor treatment outcome. Irinotecan, a topoisomerase-I inhibitor, induces cell death by decreasing the religation of double-strand DNA. However, epithelial-mesenchymal transition (EMT), therapy resistance, and systemic toxicity caused by available antineoplastic agents hinder the efficacy and safety of HNC treatment. Chemotherapy combined with gene therapy shows potential application in circumventing therapy resistance and EMT. miR-200 exerts a remarkable suppressing effect on EMT-associated genes. Herein, liposomes and solid lipid nanoparticles (SLNs) modified with a pH-sensitive, self-destructive polyethylene glycol (PEG) shell and different peptides were designed as irinotecan and miR-200 nanovectors to enhance tumor-specific accumulation. These peptides included one ligand targeting the angiogenic tumor neovasculature, one mitochondrion-directed apoptosis-inducing peptide, and one cell-penetrating peptide (CPP) with high potency and selectivity toward cancer cells. Methods: Physicochemical characterization, cytotoxicity analysis, cellular uptake, regulation mechanisms, and in vivo studies on miR-200- and irinotecan-incorporated nanoparticles were performed to identify the potential antitumor efficacy and biosafety issues involved in HNC treatment and to elucidate the underlying signaling pathways. Results: We found that the cleavable PEG layer responded to low extracellular pH, and that the CPP and targeting peptides were exposed to improve the uptake and release of miR-200 and irinotecan into HNC human tongue squamous carcinoma (SAS) cells. The apoptosis of SAS cells treated with the combinatorial therapy was significantly induced by regulating various pathways, such as the Wnt/β-catenin, MDR, and EMT pathways. The therapeutic efficacy and safety of the proposed co-treatment outperformed the commercially available Onivyde and other formulations used in a SAS tumor-bearing mouse model in this study. Conclusion: Chemotherapy and gene therapy co-treatment involving pH-sensitive and targeting peptide-modified nanoparticles may be an innovative strategy for HNC treatment.
Collapse
|
8
|
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int J Mol Sci 2019; 21:ijms21010140. [PMID: 31878222 PMCID: PMC6981492 DOI: 10.3390/ijms21010140] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as β-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired β-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Gideon Gatluak Kang
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Nidhish Francis
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2650, Australia
| | - Rodney Hill
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Daniel Waters
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Christopher Blanchard
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Abishek Bommannan Santhakumar
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
9
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
10
|
Lee JH, Go Y, Lee B, Hwang YH, Park KI, Cho WK, Ma JY. The fruits of Gleditsia sinensis Lam. inhibits adipogenesis through modulation of mitotic clonal expansion and STAT3 activation in 3T3-L1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:61-70. [PMID: 29689351 DOI: 10.1016/j.jep.2018.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. AIM OF THE STUDY The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. MATERIALS AND METHODS The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. RESULTS During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. CONCLUSIONS GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition.
Collapse
Affiliation(s)
- Ji-Hye Lee
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Younghoon Go
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Bonggi Lee
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Youn-Hwan Hwang
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Kwang Il Park
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Won-Kyung Cho
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| |
Collapse
|
11
|
Les F, Arbonés-Mainar JM, Valero MS, López V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:67-74. [PMID: 29604377 DOI: 10.1016/j.jep.2018.03.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/16/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate fruit is considered an antidiabetic medicine in certain systems of traditional medicine. In addition, pomegranate polyphenols are known as powerful antioxidants with beneficial effects such as the reduction of oxidative / inflammatory stress and the increase of protective signalling such as antioxidant enzymes, neurotrophic factors and cytoprotective proteins. AIM OF THE STUDY This work evaluates the effects of pomegranate juice, its main polyphenols known as ellagic acid and punicalagin, as well as its main metabolite urolithin A, on physiological and pharmacological targets of metabolic diseases such as obesity and diabetes. MATERIALS AND METHODS For this purpose, enzyme inhibition bioassays of lipase, α-glucosidase and dipeptidyl peptidase-4 were carried out in cell-free systems. Similarly, adipocytes derived from 3T3-L1 cells were employed to study the effects of ellagic acid, punicalagin and urolithin A on adipocyte differentiation and triglyceride (TG) accumulation. RESULTS Pomegranate juice, ellagic acid, punicalagin and urolithin A were able to inhibit lipase, α-glucosidase and dipeptidyl peptidase-4. Furthermore, all tested compounds but significantly the metabolite urolithin A displayed anti-adipogenic properties in a dose-dependent manner as they significantly reduced TG accumulation and gene expression related to adipocyte formation such as adiponectin, PPARγ, GLUT4, and FABP4 in 3T3-L1 adipocytes. CONCLUSION These results may explain from a molecular perspective the beneficial effects and traditional use of pomegranate in the prevention of metabolic-associated disorders such as obesity, diabetes and related complications.
Collapse
Affiliation(s)
- Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza) Spain; Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigacion Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - José Miguel Arbonés-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigacion Sanitaria (IIS) Aragon, Zaragoza, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| | - Marta Sofía Valero
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza) Spain.
| |
Collapse
|
12
|
Nepali S, Kim DK, Lee HY, Ki HH, Kim BR, Hwang SW, Park M, Kim DK, Lee YM. Euphorbia supina extract results in inhibition of high‑fat‑diet‑induced obesity in mice. Int J Mol Med 2018; 41:2952-2960. [PMID: 29484428 DOI: 10.3892/ijmm.2018.3495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/10/2018] [Indexed: 11/05/2022] Open
Abstract
The present study was undertaken to investigate the anti‑obesity effect of a 50% ethanol extract of Euphorbia supina (ESEE) in high‑fat‑diet (HFD)‑induced obese C57BL/6J mice. Mice were fed a HFD with or without ESEE (2, 10, or 50 mg/kg) or with Garcinia cambogia (positive control) for 6 weeks. ESEE supplementation significantly reduced body, epididymal white adipose tissue (eWAT), and organ weights (P<0.05). ESEE also reduced hepatic steatosis and improved serum lipid profiles. In addition, ESEE significantly reduced serum leptin levels and increased adiponectin levels, and significantly downregulated the mRNA and protein levels of proliferator‑activated receptor γ (PPARγ) and CCAAT/enhancer‑binding protein alpha (C/EPBα) in eWAT and liver tissues (all P<0.05). These results suggested that ESEE supplementation protects against HFD‑induced obesity by downregulating PPARγ and C/EPBα, and that ESEE may be beneficial for the prevention and treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Do-Kuk Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Bo-Ram Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Sung-Woo Hwang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Min Park
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang‑Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk 54538, Republic of Korea
| |
Collapse
|
13
|
Im SH, Wang Z, Lim SS, Lee OH, Kang IJ. Bioactivity-guided isolation and identification of anti-adipogenic compounds from Sanguisorba officinalis. PHARMACEUTICAL BIOLOGY 2017; 55:2057-2064. [PMID: 28832233 PMCID: PMC6130757 DOI: 10.1080/13880209.2017.1357736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/30/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Sanguisorba officinalis Linne (Rosaceae) is a medicinal plant used traditionally for the treatment of inflammatory and metabolic diseases in Korea, China, and Japan. In our previous study, a 50% ethanol extract inhibited fat accumulation in 3T3-L1 adipocytes. OBJECTIVE This study investigates bioassay-guided fractionation, isolation, and identification of anti-adipogenic bioactive compounds in S. officinalis. MATERIALS AND METHODS The bioassay-guided fractionation was conducted using effective differentiation of 3T3-L1 cells into adipocytes (with 50 μg/mL test material for 8 days) to isolate the inhibitory compounds from ethyl acetate fraction of S. officinalis 50% ethanol extract. The cytotoxicity of each fraction and isolated compound was tested using MTT assay (with 25-300 μg/mL test material). Structures of the isolated active compounds were elucidated using 1H NMR, 13 C NMR, HSQC, HMBC, FT-IR, and MS. RESULTS An active ethyl acetate fraction obtained with solvent partition of the extract inhibited lipid accumulation (44.84%) on 3T3-L1 cells without cytotoxicity (102.3%) at the concentration of 50 μg/mL. The ethyl acetate fraction was determined to be mainly composed by isorhamnetin-3-O-d-glucuronide (1) and ellagic acid (2). Pure isorhamnetin-3-O-d-glucuronide (IC30 is 18.43 μM) and ellagic acid (IC30 is 19.32 μM) showed lipid accumulation inhibition on 3T3-L1 cells without cytotoxicity (117.5% and 104.3%) at the concentration of 20 μM, respectively. DISCUSSION AND CONCLUSIONS These results suggested that S. officinalis is a potential natural ingredient for the prevention of obesity, which may due to bioactive compounds such as isorhamnetin-3-O-d-glucuronide and ellagic acid.
Collapse
Affiliation(s)
- Sun Hyuk Im
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Zhiqiang Wang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
14
|
Lutfi E, Babin PJ, Gutiérrez J, Capilla E, Navarro I. Caffeic acid and hydroxytyrosol have anti-obesogenic properties in zebrafish and rainbow trout models. PLoS One 2017; 12:e0178833. [PMID: 28570659 PMCID: PMC5453583 DOI: 10.1371/journal.pone.0178833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
Some natural products, known sources of bioactive compounds with a wide range of properties, may have therapeutic values in human health and diseases, as well as agronomic applications. The effect of three compounds of plant origin with well-known dietary antioxidant properties, astaxanthin (ATX), caffeic acid (CA) and hydroxytyrosol (HT), on zebrafish (Danio rerio) larval adiposity and rainbow trout (Onchorynchus mykiss) adipocytes was assessed. The zebrafish obesogenic test (ZOT) demonstrated the anti-obesogenic activity of CA and HT. These compounds were able to counteract the obesogenic effect produced by the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (RGZ). CA and HT suppressed RGZ-increased PPARγ protein expression and lipid accumulation in primary-cultured rainbow trout adipocytes. HT also significantly reduced plasma triacylglycerol concentrations, as well as mRNA levels of the fasn adipogenic gene in the adipose tissue of HT-injected rainbow trout. In conclusion, in vitro and in vivo approaches demonstrated the anti-obesogenic potential of CA and HT on teleost fish models that may be relevant for studying their molecular mode of action. Further studies are required to evaluate the effect of these bioactive components as food supplements for modulating adiposity in farmed fish.
Collapse
Affiliation(s)
- Esmail Lutfi
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Patrick J. Babin
- Maladies Rares: Génétique et Métabolisme (MRGM), University of Bordeaux, INSERM, U12211, Pessac, France
- * E-mail: (IN); (PJB)
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail: (IN); (PJB)
| |
Collapse
|
15
|
Wan XM, Zhang M, Zhang P, Xie ZS, Xu FG, Zhou P, Ma SP, Xu XJ. Jiawei Erzhiwan improves menopausal metabolic syndrome by enhancing insulin secretion in pancreatic β cells. Chin J Nat Med 2017; 14:823-834. [PMID: 27914526 DOI: 10.1016/s1875-5364(16)30099-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 10/20/2022]
Abstract
Menopausal metabolic syndrome (MMS) is a series of syndrome caused by ovarian function decline and hormone insufficiency, and is a high risk factor for cardiovascular diseases (CVD) and type II diabetes mellitus (T2DM). Erzhiwan (EZW), composed of Herba Ecliptae and Fructus Ligustri Lucidi, is a traditional Chinese herbal formula that has been used to treat menopausal syndrome for many years. We added Herba Epimedii, Radix Rehmanniae, and Fructus Corni into EZW, to prepare a new formula, termed Jiawei Erzhiwan (JE). The present study was designed to determine the anti-MMS effects of JE using ovariectomized (OVX) adult female rats that were treated with JE for 4 weeks, and β-tc-6 cells and INS cells were used to detected the protect effectiveness of JE. Our results showed JE could increase insulin sensitivity and ameliorated hyperlipidemia. Metabolomics analysis showed that the serum levels of branched and aromatic amino acids were down-regulated in serum by JE administration. Moreover, JE enhanced the function of islet β cells INS-1 and β-tc-6, through increasing the glucose stimulated insulin secretion (GSIS), which was abolished by estrogen receptor (ER) antagonist, indicating that JE functions were mediated by ER signaling. Additionally, JE did not induce tumorigenesis in rat mammary tissue or promoted proliferation of MCF-7 and Hela cells. In conclusion, our work demonstrated that JE ameliorated OVX-induced glucose and lipid metabolism disorder through activating estrogen receptor pathway and promoting GSIS in islet β cells, thus indicating that JE could be a safe and effective medication for MMS therapy.
Collapse
Affiliation(s)
- Xiao-Meng Wan
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Mu Zhang
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Zhang
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Shen Xie
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Feng-Guo Xu
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Zhou
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Ping Ma
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Jun Xu
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Nanjing 210009, China.
| |
Collapse
|
16
|
Kang I, Buckner T, Shay NF, Gu L, Chung S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv Nutr 2016; 7:961-72. [PMID: 27633111 PMCID: PMC5015040 DOI: 10.3945/an.116.012575] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellagic acid (EA) is a naturally occurring polyphenol found in some fruits and nuts, including berries, pomegranates, grapes, and walnuts. EA has been investigated extensively because of its antiproliferative action in some cancers, along with its anti-inflammatory effects. A growing body of evidence suggests that the intake of EA is effective in attenuating obesity and ameliorating obesity-mediated metabolic complications, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this review, we summarize how intake of EA regulates lipid metabolism in vitro and in vivo, and delineate the potential mechanisms of action of EA on obesity-mediated metabolic complications. We also discuss EA as an epigenetic effector, as well as a modulator of the gut microbiome, suggesting that EA may exert a broader spectrum of health benefits than has been demonstrated to date. Therefore, this review aims to suggest the potential metabolic benefits of consumption of EA-containing fruits and nuts against obesity-associated health conditions.
Collapse
Affiliation(s)
- Inhae Kang
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | - Teresa Buckner
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | - Neil F Shay
- Department of Food Science and Technology, Oregon State University, Corvallis, OR; and
| | - Liwei Gu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE;
| |
Collapse
|
17
|
Antiobesity Effects of Unripe Rubus coreanus Miquel and Its Constituents: An In Vitro and In Vivo Characterization of the Underlying Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4357656. [PMID: 26904142 PMCID: PMC4745304 DOI: 10.1155/2016/4357656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/07/2015] [Accepted: 12/27/2015] [Indexed: 01/04/2023]
Abstract
Background. The objective of the present study was to perform a bioguided fractionation of unripe Rubus coreanus Miquel (uRC) and evaluate the lipid accumulation system involvement in its antiobesity activity as well as study the uRC mechanism of action. Results. After the fractionation, the BuOH fraction of uRC (uRCB) was the most active fraction, suppressing the differentiation of 3T3-L1 adipocytes in a dose-dependent manner. Moreover, after an oral administration for 8 weeks in HFD-induced obese mice, uRCB (10 and 50 mg/kg/day) produced a significant decrease in body weight, food efficiency ratio, adipose tissue weight and LDL-cholesterol, serum glucose, TC, and TG levels. Similarly, uRCB significantly suppressed the elevated mRNA levels of PPARγ in the adipose tissue in vivo. Next, we investigated the antiobesity effects of ellagic acid, erycibelline, 5-hydroxy-2-pyridinemethanol, m-hydroxyphenylglycine, and 4-hydroxycoumarin isolated from uRCB. Without affecting cell viability, five bioactive compounds decreased the lipid accumulation in the 3T3-L1 cells and the mRNA expression levels of key adipogenic genes such as PPARγ, C/EBPα, SREBP-1c, ACC, and FAS. Conclusion. These results suggest that uRC and its five bioactive compounds may be a useful therapeutic agent for body weight control by downregulating adipogenesis and lipogenesis.
Collapse
|
18
|
Nejad KH, Dianat M, Sarkaki A, Naseri MKG, Badavi M, Farbood Y. Ellagic acid improves electrocardiogram waves and blood pressure against global cerebral ischemia rat experimental models. Electron Physician 2015; 7:1153-62. [PMID: 26396728 PMCID: PMC4578534 DOI: 10.14661/2015.1153-1162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/25/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Global cerebral ischemia (GCIR) arises in patients that are shown a variety of clinical difficulty including cardiac arrest, asphyxia, and shock. In spite of advances in understanding of the brain, ischemia and protective effects to improve ischemic injury still remain unknown. The aim of our study was to investigate the effect of ellagic acid (EA) pretreatment in the rat models of global cerebral ischemia reperfusion. METHODS This experimental study was conducted in 2014 at the Physiology Research Center of the Ahvaz Jundishapur University of Medical Sciences in Ahvaz, Iran. Adult male Wistar rats (250-300 g) were used in this study. GCIR was induced by bilateral vertebral and common carotid arteries occlusion (4-VO). 32 rats were divided randomly to four groups: 1) So (Sham) received normal saline as vehicle of EA, 2) EA, 3) normal saline + GCIR, and 4) EA + GCIR. After anesthesia (a mix of xylazine and ketamine), animal subjected to 20 minutes of ischemia followed by 30 minutes of reperfusion in related groups. EA (100 mg/kg, dissolved in normal saline) or 1.5 ml/kg normal saline was administered (gavage, 10 days) to the related groups. EEG was recorded from NTS in GCIR treated groups. RESULTS Present data showed that: 1) EEG in GCIR treated groups was flattened; 2) Blood pressure, voltage of QRS and P-R interval were reduced significantly in the ischemic groups compared to before ischemia, and pretreatment with EA prevented this reduction; and 3) MDA level and heart rate was increased by GCIR and pretreatment with EA reduced MDA level and restored the HR to normal level. CONCLUSION Results indicate that global cerebral ischemia-reperfusion impairs certain heart functions and ellagic acid as an antioxidant can restore these parameters. The results of this study suggest the possible utility of ellagic acid in patients with brain stroke.
Collapse
Affiliation(s)
- Khojasteh Hoseiny Nejad
- Ph.D. Student, Abadan Arvand International Division, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib Naseri
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|