1
|
Ikram A, Khalid W, Saeed F, Arshad MS, Afzaal M, Arshad MU. Senna: As immunity boosting herb against Covid-19 and several other diseases. J Herb Med 2023; 37:100626. [PMID: 36644449 PMCID: PMC9830937 DOI: 10.1016/j.hermed.2023.100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/16/2020] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Introduction A novel coronavirus outbreak in China (SARS-CoV-2) which began in December 2019, was proven major threat to global health. However, several results from clinical practices indicate that herbal medicine plays an important role in the prevention of COVID-19, which brings new hope for its treatment. The objective of this study is to check the effectivity of senna (Senna alexandrina Mill.) as an immunity-boosting herb against Covid-19 and several other diseases. Method The literature search was carried out using scientific databases comprising of Scopus, Science Direct, PubMed, Cochrane Library, Science Hub and Google Scholar, up to May 2020, using the following keywords: "senna", "senna makki", "Senna alexandrina", "senna nutrition value", "senna medicinal effect", "vitamins in senna", "mineral in senna", "bioactive compounds in senna", "laxiary components in senna", "senna against diseases", "senna enhance immunity", "covid_19″, "covid_19 symptoms". The authors also obtained data from primary and secondary sources as well. Result The results of different studies showed that senna was composed of a wide range of immunity-enhancing bioactive components like antioxidants, vitamins, minerals and laxatives. These bioactive components are effective against COVID-19 and other diseases. Conclusion Senna has medicinal and nutritional effects on the human body and has a key role in boosting immunity to prevent COVID-19 symptoms. Important nutritional components of senna include antioxidants, phytochemicals, vitamins and minerals that aids in reducing the risk of various diseases and also enhances the immune system.
Collapse
|
2
|
Humeniuk E, Adamczuk G, Kubik J, Adamczuk K, Józefczyk A, Korga-Plewko A. Cardioprotective Effect of Centaurea castriferrei Borbás & Waisb Extract against Doxorubicin-Induced Cardiotoxicity in H9c2 Cells. Molecules 2023; 28:420. [PMID: 36615632 PMCID: PMC9824364 DOI: 10.3390/molecules28010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin (DOX) is one of the most used chemotherapeutic agents in the treatment of various types of cancer. However, a continual problem that is associated with its application in therapeutic regimens is the development of dose-dependent cardiotoxicity. The progression of this process is associated with a range of different mechanisms, but especially with the high level of oxidative stress. The aim of the study was to evaluate the effects of the water and methanol-water extracts from the plant Centaurea castriferrei (CAS) obtained by the ultrasound-assisted extraction method on the DOX-induced cardiotoxicity in the rat embryonic cardiomyocyte cell line H9c2. The H9c2 cells were treated for 48 h with the DOX and water or methanol-water extracts, or a combination (DOX + CAS H2O/CAS MeOH). The MTT assay, cell cycle analysis, and apoptosis detection revealed that both the tested extracts significantly abolished the cytotoxic effect caused by DOX. Moreover, the detection of oxidative stress by the CellROX reagent, the evaluation of the number of AP sites, and the expressions of the genes related to the oxidative stress defense showed substantial reductions in the oxidative stress levels in the H9c2 cells treated with the combination of DOX and CAS H2O/CAS MeOH compared with the DOX administered alone. The tested extracts did not affect the cytotoxic effect of DOX on the MCF-7 breast cancer cell line. The obtained results constitute the basis for further research in the context of the application of C. castriferrei extracts as adjuvants in the therapy regiments of cancer patients treated with DOX.
Collapse
Affiliation(s)
- Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, 20-090 Lublin, Poland
| | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Street, 20-090 Lublin, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| |
Collapse
|
3
|
Sura MB, Ponnapalli MG, Annam SCVAR, Bobbili VVP. Ipomeolides A and B, Resin Glycosides from Ipomoea pes-caprae and Combination Therapy of Ipomeolide A with Doxorubicin. JOURNAL OF NATURAL PRODUCTS 2019; 82:1292-1300. [PMID: 31017778 DOI: 10.1021/acs.jnatprod.8b01100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two new resin glycosides, ipomeolides A (1) and B (2), both with an unusual nonlinear heteropentasaccharide core, along with five known compounds were isolated from the n-hexane/CHCl3 (1:1) extract of the aerial parts of Ipomoea pes-caprae. Ipomeolides A (1) and B (2) are macrolactone analogues of the rare (11 R)-jalapinolic acid, and macrolactonization occurred at C-2 of the second saccharide moiety. Compounds 1 and 2 show structural variation even in the pentasaccharide core. The structures of 1 and 2 were established by a combination of spectroscopic techniques as well as chemical modifications such as acetyl and acetonide derivatives as well as hydrolysis products. The new glycosidic acid was named ipomeic acid (1c). Compounds 1, 1b, and 2b were evaluated for cytotoxicity against human tumor cell lines. Compounds 1b and 2b were not effective on epithelial cells, but affected survival of K-562, which is of hematopoietic origin. A sublethal concentration of compound 1 (4 μM) when used in combination with 1 μM doxorubicin, an anticancer agent, significantly enhanced cytotoxicity to tumor cells. Such combined synergistic potency against leukemia cells and the absence of effects on epithelial cells may be beneficial for chemotherapy with minimal side effects to treat CML (chronic myeloid leukemia) malignancies.
Collapse
Affiliation(s)
- Madhu B Sura
- Centre for Natural Products and Traditional Knowledge , Indian Institute of Chemical Technology , Hyderabad 500007 , India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus , Hyderabad 500007 , India
| | - Mangala G Ponnapalli
- Centre for Natural Products and Traditional Knowledge , Indian Institute of Chemical Technology , Hyderabad 500007 , India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus , Hyderabad 500007 , India
| | - S Ch V A Rao Annam
- Centre for Natural Products and Traditional Knowledge , Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | | |
Collapse
|
4
|
Abstract
SIGNIFICANCE The long-term hematopoietic stem cell (LT-HSC) demonstrates characteristics of self-renewal and the ability to manage expansion of the hematopoietic compartment while maintaining the capacity for differentiation into hematopoietic stem/progenitor cell (HSPC) and terminal subpopulations. Deregulation of the HSPC redox environment results in loss of signaling that normally controls HSPC fate, leading to a loss of HSPC function and exhaustion. The characteristics of HSPC exhaustion via redox stress closely mirror phenotypic traits of hematopoietic malignancies and the leukemic stem cell (LSC). These facets elucidate the HSC/LSC redox environment as a druggable target and a growing area of cancer research. Recent Advances: Although myelosuppression and exhaustion of the hematopoietic niche are detrimental side effects of classical chemotherapies, new agents that modify the HSPC/LSC redox environment have demonstrated the potential for protection of normal HSPC function while inducing cytotoxicity within malignant populations. CRITICAL ISSUES New therapies must preserve, or only slightly disturb normal HSPC redox balance and function, while simultaneously altering the malignant cellular redox state. The cascade nature of redox damage makes this a critical and delicate line for the development of a redox-based therapeutic index. FUTURE DIRECTIONS Recent evidence demonstrates the potential for redox-based therapies to impact metabolic and epigenetic factors that could contribute to initial LSC transformation. This is balanced by the development of therapies that protect HSPC function. This pushes toward therapies that may alter the HSC/LSC redox state but lead to initiation cell fate signaling lost in malignant transformation while protecting normal HSPC function. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Dustin Carroll
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky , Lexington, Kentucky
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
5
|
Proteomic fingerprinting of mistletoe ( Viscum album L.) via combinatorial peptide ligand libraries and mass spectrometry analysis. J Proteomics 2017; 164:52-58. [DOI: 10.1016/j.jprot.2017.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 11/18/2022]
|
6
|
Srdic-Rajic T, Santibañez JF, Kanjer K, Tisma-Miletic N, Cavic M, Galun D, Jevric M, Kardum N, Konic-Ristic A, Zoranovic T. Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells. Sci Rep 2017. [PMID: 28630419 PMCID: PMC5476621 DOI: 10.1038/s41598-017-03898-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemotherapy in patients with inoperable or advanced breast cancer inevitably results in low-dose exposure of tumor-cell subset and senescence. Metabolically active senescent cells secrete multiple tumor promoting factors making their elimination a therapeutic priority. Viscum album is one of the most widely used alternative anti-cancer medicines facilitating chemotherapy tolerance of breast cancer patients. The aim of this study was to model and investigate how Viscum album extracts execute additive anti-tumor activity with low-dose Dox using ER + MCF7 breast cancer cells. We report that cotreatment of MCF7 with Viscum album and Dox abrogates G2/M cycle arrest replacing senescence with intrinsic apoptotic program. Mechanistically, this switch was associated with down-regulation of p21, p53/p73 as well as Erk1/2 and p38 activation. Our findings, therefore, identify a novel mechanistic axis of additive antitumor activity of Viscum album and low dose-Dox. In conclusion, ER + breast cancer patients may benefit from addition of Viscum album to low-dose Dox chemotherapy due to suppression of cancer cell senescence and induction of apoptosis.
Collapse
Affiliation(s)
- Tatjana Srdic-Rajic
- Department of Experimental Oncology, National Cancer Research Center, Belgrade, Serbia
| | - Juan F Santibañez
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia.,Laboratorio de Bionanotecnologia, Universidad Bernardo O Higgins, General Gana 1780, 8370854, Santiago, Chile
| | - Ksenija Kanjer
- Department of Experimental Oncology, National Cancer Research Center, Belgrade, Serbia
| | - Nevena Tisma-Miletic
- Department of Experimental Oncology, National Cancer Research Center, Belgrade, Serbia
| | - Milena Cavic
- Department of Experimental Oncology, National Cancer Research Center, Belgrade, Serbia
| | - Daniel Galun
- University Clinic for Digestive Surgery, Clinical center of Serbia, Belgrade, Serbia.,Medical School, University of Belgrade, Belgrade, Serbia
| | - Marko Jevric
- Department of Surgery, National Cancer Research Center, Belgrade, Serbia
| | - Nevena Kardum
- Institute for Medical Research, Center of Research Excellence in Nutrition and Metabolism, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Konic-Ristic
- Institute for Medical Research, Center of Research Excellence in Nutrition and Metabolism, University of Belgrade, Belgrade, Serbia
| | - Tamara Zoranovic
- Department of Experimental Oncology, National Cancer Research Center, Belgrade, Serbia. .,Max Plank Institute for Infection Biology, Berlin Area, Germany.
| |
Collapse
|
7
|
Kleinsimon S, Kauczor G, Jaeger S, Eggert A, Seifert G, Delebinski C. ViscumTT induces apoptosis and alters IAP expression in osteosarcoma in vitro and has synergistic action when combined with different chemotherapeutic drugs. Altern Ther Health Med 2017; 17:26. [PMID: 28061770 PMCID: PMC5219806 DOI: 10.1186/s12906-016-1545-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/22/2016] [Indexed: 12/23/2022]
Abstract
Background Osteosarcoma is the most common bone tumor and is associated with a poor prognosis. Conventional therapies, surgery and chemotherapy, are still the standard but soon reach their limits. New therapeutic approaches are therefore needed. Conventional aqueous mistletoe extracts from the European mistletoe (Viscum album L.) are used in complementary cancer treatment. These commercial extracts are water-based and do not include water-insoluble compounds such as triterpenic acids. However, both hydrophilic and hydrophobic triterpenic acids possess anti-cancer properties. In this study, a whole mistletoe extract viscumTT re-created by combining an aqueous extract (viscum) and a triterpene extract (TT) was tested for its anti-cancer potential in osteosarcoma. Methods Two osteosarcoma cell lines were treated with three different mistletoe extracts viscum, TT and viscumTT to compare their apoptotic potential. For this purpose, annexin/PI staining and caspase-3, −8 and −9 activity were investigated by flow cytometry. To determine the mechanism of action, alterations in expression of inhibitors of apoptosis (IAPs) were detected by western blot. Apoptosis induction by co-treatment of viscum, TT and viscumTT with doxorubicin, etoposide and ifosfamide was examined by flow cytometry. Results In vitro as well as ex vivo, the whole mistletoe extract viscumTT led to strong inhibition of proliferation and synergistic apoptosis induction in osteosarcoma cells. In the investigations of mechanism of action, inhibitors of apoptosis such as XIAP, BIRC5 and CLSPN showed a clear down-regulation after viscumTT treatment. In addition, co-treatment with doxorubicin, etoposide and ifosfamide further enhanced apoptosis induction, also synergistically. Conclusion ViscumTT treatment results in synergistic apoptosis induction in osteosarcoma cells in vitro and ex vivo. Additionally, conventional standard chemotherapeutic drugs such as doxorubicin, etoposide and ifosfamide were able to dramatically enhance apoptosis induction. These results promise a high potential of viscumTT as an additional adjuvant therapy approach for osteosarcoma. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1545-7) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Harati K, Behr B, Daigeler A, Hirsch T, Jacobsen F, Renner M, Harati A, Wallner C, Lehnhardt M, Becerikli M. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays. Nutr Cancer 2017; 69:340-351. [PMID: 28045549 DOI: 10.1080/01635581.2017.1263349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. METHODS Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). RESULTS As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. CONCLUSION Curcumin and VAE can inhibit the proliferation and viability of STS cells.
Collapse
Affiliation(s)
- K Harati
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - B Behr
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - A Daigeler
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - T Hirsch
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - F Jacobsen
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - M Renner
- b Institute of Pathology, University of Heidelberg , Heidelberg , Germany
| | - A Harati
- c Department of Neurosurgery , Klinikum Dortmund , Dortmund , Germany
| | - C Wallner
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - M Lehnhardt
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| | - M Becerikli
- a Department of Plastic Surgery , Burn Center, Hand Center, Sarcoma Reference Center, BG-University Hospital Bergmannsheil Bochum , Bochum , Germany
| |
Collapse
|
9
|
Cheng YT, Yang CC, Shyur LF. Phytomedicine-Modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res 2016; 114:128-143. [PMID: 27794498 DOI: 10.1016/j.phrs.2016.10.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
In spite of the current advances and achievements in systems biology and translational medicinal research, the current strategies for cancer therapy, such as radiotherapy, targeted therapy, immunotherapy and chemotherapy remain palliative or unsatisfactory due to tumor metastasis or recurrence after surgery/therapy, drug resistance, adverse side effects, and so on. Oxidative stress (OS) plays a critical role in chronic/acute inflammation, carcinogenesis, tumor progression, and tumor invasion/metastasis which is also attributed to the dynamic and complex properties and activities in the tumor microenvironment (TME). Re-educating or reprogramming tumor-associated stromal or immune cells in the TME provides an approach for restoring immune surveillance impaired by disease in cancer patients to increase overall survival and reduce drug resistance. Herbal medicines or plant-derived natural products have historically been a major source of anti-cancer drugs. Delving into the lore of herbal medicine may uncover new leads for anti-cancer drugs. Phytomedicines have been widely documented to directly or indirectly target multiple signaling pathways and networks in cancer cells. A combination of anti-cancer drugs and polypharmacological plant-derived extracts or compounds may offer a significant advantage in sensitizing the efficacy of monotherapy and overcoming drug-induced resistance in cancer patients. This review introduces several phytochemicals and phytoextracts derived from medicinal plants or dietary vegetables that have been studied for their efficacy in preclinical cancer models. We address the underlying modes of action of induction of OS and deregulation of TME-associated stromal cells, mediators and signaling pathways, and reference the related clinical investigations that look at the single or combination use of phytochemicals and phytoextracts to sensitize anti-cancer drug effects and/or overcome drug resistance.
Collapse
Affiliation(s)
- Yu-Ting Cheng
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chun-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
10
|
The Chemical Profile of Senna velutina Leaves and Their Antioxidant and Cytotoxic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8405957. [PMID: 27803764 PMCID: PMC5075628 DOI: 10.1155/2016/8405957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Abstract
Natural products can be a source of biomolecules with antioxidant activity which are able to prevent oxidative stress-induced diseases and show antitumor activity, making them important sources of new anticancer drug prototypes. In this context, this study aimed to analyze the chemical composition of an ethanol extract of Senna velutina leaves and to assess its antioxidant and cytotoxic activities in leukemic cells. The antioxidant properties were evaluated using a DPPH free radical scavenging assay and by examining the extract's inhibition of AAPH-induced lipid peroxidation in human erythrocytes. Its cytotoxicity and possible mechanisms of action were assessed in Jurkat and K562 leukemic cell lines. The ethanol extract contained flavonoids, such as epigallocatechin, epicatechin, kaempferol heteroside, rutin, and dimeric and trimeric proanthocyanidin derivatives. The extract exhibited antioxidant activity by scavenging free radicals and antihemolytic action, and it decreased malondialdehyde content in human erythrocytes. Furthermore, the extract also induced leukemic cell death by activating intracellular calcium and caspase-3, decreasing mitochondrial membrane potential, and arresting the cell cycle in S and G2 phases. Hence, S. velutina leaf extract contains antioxidant and antileukemic biomolecules with potential applications in diseases associated with oxidative stress and in the inhibition of tumor cell proliferation.
Collapse
|
11
|
Singh BN, Saha C, Galun D, Upreti DK, Bayry J, Kaveri SV. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv 2016. [DOI: 10.1039/c5ra27381a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viscum albumL. or European mistletoe (Loranthaceae), a semi-parasitic shrub, has been used as a traditional medicine in Europe for centuries to treat various diseases like cancer, cardiovascular disorder, epilepsy, infertility, hypertension and arthritis.
Collapse
Affiliation(s)
- Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| | - Danijel Galun
- Clinic for Digestive Surgery
- Clinical Centre of Serbia
- Belgrade
- Serbia
- Medical School
| | - Dalip K. Upreti
- Lichenology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| | - Srini V. Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| |
Collapse
|