1
|
Anwar MA, El Gedaily RA, Salama A, Aboulthana WM, Kandil ZA, Abdel-Dayem SIA. Phytochemical analysis and wound healing properties of Malva parviflora L. ethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118983. [PMID: 39490430 DOI: 10.1016/j.jep.2024.118983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scientific publications documented the use of plants from Genus Malva to treat inflammatory diseases and skin disorders by our ancestors. Malva parviflora L. has reported benefits for wound healing in traditional medicine; however, there is a lack of experimental study to validate these claims. AIM We initiated this study to explore the metabolites and verify the wound healing properties of M. parviflora using in vivo and in vitro models. MATERIALS AND METHODS Liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was used to identify the ethanolic extract different metabolites. Additionally, total phenolic content was determined using Folin-Ciocalteu reagent. To verify the extract wound healing potential, an in vivo rat wound excision model was employed. Round wounds (5 mm in diameter) were created by a sterile biopsy punch needle. The wounds were treated with plant extracts (2.5% and 5%) as well as a commercially available wound healing product (Mebo®) for 10 days. The results were assessed as follows: 1) Measuring the reduction% in wound area compared to the original wound size. 2) Evaluation of the levels of wound healing biomarkers, namely collagen type I (Col-1), alpha smooth muscle actin (α-SMA), extracellular signal-regulated kinases-1 (ERK1), and matrix metalloproteinase-9 (MMP9) levels. 3) Performing histopathological examination of the wound tissue. The antioxidant properties of the M. parviflora leaves ethanolic extract were investigated using various assays: total antioxidant capacity (TAC), iron reducing power (IRP), 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals scavenging assays. Furthermore, the anti-inflammatory activity was confirmed by calculating the inhibition percentages of protein denaturation and the activity of the proteinase enzyme. RESULTS Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed the presence of various secondary metabolites in M. parviflora ethanolic extract, including phenolic acids (cinnamic and ferulic acids), flavonoids (quercetin and "iso"rhamnetin monoglucuronides), fatty acids (hydroxy-octadecatrienoic and oxo-octadecatrienoic acids), in addition to chlorophyll derivatives and carotenoids (pheophorbide-a and lutein, respectively). Malva extracts significantly reduced wound size compared to untreated control group. The extracts also promoted wound healing by upregulating collagen I, α-SMA, and ERK1 levels, while downregulating MMP9 expression. Notably, the effect of 2.5% and 5% extracts was similar or exceeds those of Mebo®, supported by histopathological results. Finally, M. parviflora ethanolic extract exhibited antioxidant and anti-inflammatory potentials comparable to the used standards. CONCLUSION Our study provides evidence-based support for the wound healing properties of M. parviflora L. leaves ethanolic extract. This is further strengthened by the fact that many of the identified metabolites possess wound healing, antioxidant, and/or anti-inflammatory activities.
Collapse
Affiliation(s)
- Mohamed A Anwar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Rania A El Gedaily
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Zeinab A Kandil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
2
|
Zhou T, Zhang C, Wang X, Lin J, Yu J, Liang Y, Guo H, Yang M, Shen X, Li J, Shi R, Wang Y, Yang J, Shu Z. Research on traditional Chinese medicine as an effective drug for promoting wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118358. [PMID: 38763370 DOI: 10.1016/j.jep.2024.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chongyang Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Huilin Guo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Mengru Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xuejuan Shen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jianhua Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| |
Collapse
|
3
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
4
|
Kumar AS, Prema D, Rao RG, Prakash J, Balashanmugam P, Devasena T, Venkatasubbu GD. Fabrication of poly (lactic-co-glycolic acid)/gelatin electro spun nanofiber patch containing CaCO 3/SiO 2 nanocomposite and quercetin for accelerated diabetic wound healing. Int J Biol Macromol 2024; 254:128060. [PMID: 37963500 DOI: 10.1016/j.ijbiomac.2023.128060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
An open wound or sore on the bottom of the foot caused by diabetes is known as a diabetic foot ulcer. Preventive measures are essential, including consistent foot care and glycemic management. The dangers associated with diabetic foot ulcers can be reduced via early identification and timely treatment. The risk of foot ulcers and limb amputation increases with age and duration of diabetes. Quercetin contains anti-inflammatory and antioxidant properties. Furthermore, the calcium carbonate/silica (CaCO3/SiO2) nanocomposite has a good anti-inflammatory property due to the presence of calcium, which will aid in wound healing. As a result, combining quercetin (plant based anti-inflammatory drug) and CaCO3/SiO2 nanocomposite will boost the wound healing rate. We have synthesized CaCO3/SiO2 nanocomposite in sol-gel method and characterized using XRD, FTIR and TEM. Cell line tests and the MTT assay revealed that the PLGA/gelatin/CaCO3/SiO2/quercetin patch enhanced the proliferation of cells. Its anti-bacterial efficacy against four major bacterial strains often found in wound locations, as well as its water retention, make it an ideal material for diabetic wound healing. In-vivo trials confirms the enhanced diabetic wound healing potential of the patch.
Collapse
Affiliation(s)
- Ajay S Kumar
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603 203, India
| | - D Prema
- Department of Biomedical engineering, Karpagam academy of higher education, Pollachi Main Road, Eachanari Post, Coimbatore 641 021, Tamil Nadu, India
| | - R Gagana Rao
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603 203, India
| | - J Prakash
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | | | - T Devasena
- Centre for Nanoscience and Technology, Anna University, Chennai, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603 203, India.
| |
Collapse
|
5
|
Hashemi SS, Pakdin A, Mohammadi A, Keshavarzi A, Mortazavi M, Sanati P. Study the Effect of Calendula officinalis Extract Loaded on Zinc Oxide Nanoparticle Cream in Burn Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59269-59279. [PMID: 38085997 DOI: 10.1021/acsami.3c17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The skin, the body's largest organ, acts as a protective barrier against pathogens and environmental damage. Skin burns can result from heat, chemicals, friction, or electricity. Nanoscience has recently been utilized to create ointments and creams for burns. Zinc oxide nanoparticles are crucial due to their antimicrobial and antioxidant properties. In this study, a cream containing nanoparticles was loaded with calendula extract, and its ability to promote tissue healing was investigated in Wistar rats with skin burns. The zinc oxide nanoparticles were chemically synthesized and loaded with calendula extract. The morphology and physicochemical properties of the nanoparticles were confirmed by SEM, ZETA size, XRD, and FTIR assays. The MTT technique was employed to assess the cream's impact on fibroblast growth. The antimicrobial activity of the nanoparticles was investigated against Pseudomonas using the MIC method. Real-time PCR was used to determine the expression of the Bax and Bcl-2 genes in aeruginosa. The results showed that zinc oxide nanoparticles at high concentrations increased the proliferation of the fibroblast cells. Histopathological studies showed granulation and epithelialization of the tissue without any hemorrhage or tissue infection during the first days of treatment with this cream. The animal models treated with the cream showed an increase in Bcl-2 gene expression and a decrease in Bax expression. We concluded that zinc oxide nanoparticles loaded with calendula extract have a practical effect in healing burn wounds due to their unique antibacterial properties of zinc oxide nanoparticles and their anti-inflammatory and wound-healing effects. The synergistic effect of these two substances significantly improved the healing process. This newly developed cream can be introduced as a successful and viable treatment option in burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Amir Pakdin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran
| | - Parisa Sanati
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
6
|
Nowak-Terpiłowska A, Nowak I, Feliczak-Guzik A, Wyganowska M. Analysis of the Impact of Ethanol Extract of Calendula officinalis L. on Human Fibroblast Cell Cultures Using the PANsys 3000 Device for Breeding and Visualization of Cells. Life (Basel) 2023; 13:1949. [PMID: 37895331 PMCID: PMC10608748 DOI: 10.3390/life13101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Calendula officinalis L. promotes wound healing and might be effective in gingival fibroblast stimulation. The influence of different concentrations of Calendula officinalis L. ethanol extract on human gingival fibroblast was visualized using PANsys 3000-a fully automated cell culture device used for in vitro culture to study cells under conditions similar to in vivo. The human fibroblast cells were isolated from gingival tissue. The 100% brew of Calendula officinalis L., as well as 7% and 20% Calendula officinalis L. ethanol extract, were added to the cultured cells and observed for 72 h. The qualitative and quantitative composition of the volatile compounds of marigold Calendula officinalis L. flowers are presented in this study. The essential oil compounds of the decoction were isolated with solid-phase microextraction (SPME) and analyzed with gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The presence of terpenoids, flavonoids, and other compounds was demonstrated. The composition was correlated with the fragrance properties. Observation of gingival fibroblast showed that there were no changes in cell morphology and proliferation after 100% Calendula officinalis L. brew stimulation. The growth and cell division were not inhibited. Likewise, the addition of 7% or 20% ethanol in water extract of Calendula officinalis L. stimulation did not inhibit the fibroblast proliferation. Overall, ethanol extracts of Calendula officinalis L. decrease the alcohol cytotoxic influence on gingival fibroblasts.
Collapse
Affiliation(s)
- Agnieszka Nowak-Terpiłowska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11 St., 60-632 Poznan, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 St., 61-614 Poznan, Poland; (I.N.); (A.F.-G.)
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 St., 61-614 Poznan, Poland; (I.N.); (A.F.-G.)
| | - Marzena Wyganowska
- Department of Dental Surgery, Periodontology and Oral Mucosa Diseases, Poznan University of Medical Sciences, Bukowska 70 St., 60-812 Poznan, Poland;
| |
Collapse
|
7
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Milani F, Bottoni M, Bardelli L, Colombo L, Colombo PS, Bruschi P, Giuliani C, Fico G. Remnants from the Past: From an 18th Century Manuscript to 21st Century Ethnobotany in Valle Imagna (Bergamo, Italy). PLANTS (BASEL, SWITZERLAND) 2023; 12:2748. [PMID: 37514363 PMCID: PMC10386062 DOI: 10.3390/plants12142748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND This project originated from the study of an 18th century manuscript found in Valle Imagna (Bergamo, Italy) which contains 200 plant-based medicinal remedies. A first comparison with published books concerning 20th century folk medicine in the Valley led to the designing of an ethnobotanical investigation, aimed at making a thorough comparison between past and current phytotherapy knowledge in this territory. METHODS The field investigation was conducted through semi-structured interviews. All data collected was entered in a database and subsequently processed. A diachronic comparison between the field results, the manuscript, and a 20th century book was then performed. RESULTS A total of 109 interviews were conducted and the use of 103 medicinal plants, belonging to 46 families, was noted. A decrease in number of plant taxa and uses was observed over time, with only 42 taxa and 34 uses reported in the manuscript being currently known by the people of the valley. A thorough comparison with the remedies in the manuscript highlighted similar recipes for 12 species. Specifically, the use of agrimony in Valle Imagna for the treatment of deep wounds calls back to an ancient remedy against leg ulcers based on this species. CONCLUSIONS The preliminary results of this study allow us to outline the partial passage through time fragments of ancient plant-based remedies once used in the investigated area.
Collapse
Affiliation(s)
- Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Laura Bardelli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, 50144 Florence, Italy
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
9
|
Pelin IM, Silion M, Popescu I, Rîmbu CM, Fundueanu G, Constantin M. Pullulan/Poly(vinyl alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics 2023; 15:1674. [PMID: 37376122 PMCID: PMC10301438 DOI: 10.3390/pharmaceutics15061674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The therapeutic efficiency of plant extracts has been limited by their poor pharmaceutical availability. Hydrogels have promising potential to be applied as wound dressings due to their high capacity to absorb exudates and their enhanced performance in loading and releasing plant extracts. In this work, pullulan/poly (vinyl alcohol) (P/PVA) hydrogels were first prepared using an eco-friendly method based on both a covalent and physical cross-linking approach. Then, the hydrogels were loaded with the hydroalcoholic extract of Calendula officinalis by a simple post-loading immersion method. Different loading capacities were investigated in terms of the physico-chemical properties, chemical composition, mechanical properties, and water absorption. The hydrogels exhibited high loading efficiency due to the hydrogen bonding interactions between polymer and extract. The water retention capacity as well as the mechanical properties decreased with the increase in the extract amount in hydrogel. However, higher amounts of extract in the hydrogel improved the bioadhesiveness. The release of extract from hydrogels was controlled by the Fickian diffusion mechanism. Extract-loaded hydrogels expressed high antioxidant activity, reaching 70% DPPH radical scavenging after 15 min immersion in buffer solution at pH 5.5. Additionally, loaded hydrogels showed a high antibacterial activity against Gram-positive and Gram-negative bacteria and were non-cytotoxic against HDFa cells.
Collapse
Affiliation(s)
- Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Mihaela Silion
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Cristina Mihaela Rîmbu
- Faculty of Veterinary Medicine “Ion Ionescu de la Brad”, University of Life Science, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (M.S.); (I.P.); (G.F.)
| |
Collapse
|
10
|
Saha I, Roy S, Das D, Das S, Karmakar P. Topical effect of polyherbal flowers extract on xanthan gum hydrogel patch-induced wound healing activity in human cell lines and male BALB/c mice. Biomed Mater 2023; 18:035016. [PMID: 37075777 DOI: 10.1088/1748-605x/acce89] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/19/2023] [Indexed: 04/21/2023]
Abstract
Wound or injury is a breakdown in the skin's protective function as well as damage to the normal tissues. Wound healing is a dynamic and complex phenomenon of replacing injured skin or body tissues. In ancient times theCalendula officinalisandHibiscus rosa-sinensisflowers were extensively used by the tribal communities as herbal medicine for various complications including wound healing. But loading and delivery of such herbal medicines are challenging because it maintains their molecular structure against temperature, moisture, and other ambient factors. This study has fabricated xanthan gum (XG) hydrogel through a facile process and encapsulatedC. officinalisandH. rosa-sinensisflower extract. The resulting hydrogel was characterized by different physical methods like x-ray diffractometer, UV-vis spectroscopy, Fourier transform infrared spectroscopy, SEM, dynamic light scattering, electronkinetic potential in colloidal systems (ZETA) potential, thermogravimetric differential thermal analysis (TGA-DTA), etc. The polyherbal extract was phytochemically screened and observed that flavonoids, alkaloids, terpenoids, tannins, saponins, anthraquinones, glycosides, amino acids, and a few percentages of reducing sugar were present in the polyherbal extract. Polyherbal extract encapsulated XG hydrogel (X@C-H) significantly enhanced the proliferation of fibroblast and keratinocyte cell lines in comparison to the bare excipient treated cells as determined by 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium bromide assay. Also, the proliferation of these cells was confirmed by BrdU assay and enhanced expression of pAkt. In anin-vivostudy, wound healing activity of BALB/c mice was carried out and we observed that X@C-H hydrogel showed significant result compared to the other groups (untreated, X, X@C, X@H). Henceforth, we conclude that this synthesized biocompatible hydrogel could emerge as a promising carrier of more than one herbal excipients.
Collapse
Affiliation(s)
- Ishita Saha
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Shubham Roy
- Department of Physics, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Deepak Das
- GLA University, 17 km Stone, NH-2, Mathura-Delhi Road P.O. Chaumuhan, Mathura 281406, U.P., India
| | - Sukhen Das
- Department of Physics, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
11
|
Antonio Pereira I, Judah Cury B, Kaio Silva Nunes R, Mota da Silva L. Traditional Plants Used in Southern Brazil as a Source to Wound Healing Therapies. Chem Biodivers 2023; 20:e202201021. [PMID: 36703603 DOI: 10.1002/cbdv.202201021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
In southern Brazil, the biodiversity is great and the traditional use of medicinal plants for wound healing has been documented in ethnobotanical studies and pharmacological studies have assessed their wound properties and phytochemistry. Therefore, this study evaluated ethnobotanical surveys regarding medicinal plants used in southern Brazil for wound healing and studies about the healing properties of these plants published between 2000 and 2022. To retrieve articles related to the study, Web of Science, PubMed (NLM), Open Access Journals, Scielo, Lilacs, and Google Scholar, with keywords including medicinal plants, wound healing, and South of Brazil, have been used. As a result, 73 medicinal plants belonging to 39 families were found in ethnobotanical surveys as a traditional resource used for wound healing in southern Brazil, 15 of which were cited more than once. Besides, 14 of these 15 plants were also used as healing agents worldwide. The most cited plant with healing actions in southern Brazil was Symphytum officinale L. (comfrey). From 2000 to date, 44 articles scientifically demonstrated the wound-healing effects of the southern Brazilian plants found in ethnobotanical surveys reviewed. The folk medicine of southern Brazil presents a variety of medicinal plants for wound-healing purposes, and scientific data were found for some of those plants. However, the wound-healing properties of many plants have yet to be investigated, and the current literature still needs more phytochemical information about the plants studied. Aside from this, the future focus should be on the standardization of herbal extracts, and further research is required to investigate the pharmacological mechanisms. Clinical research in this area remains in its infancy and warrants more robust further clinical studies.
Collapse
Affiliation(s)
| | - Benhur Judah Cury
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí-UNIVALI, Itajaí, Brazil
| | - Ruan Kaio Silva Nunes
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí-UNIVALI, Itajaí, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí-UNIVALI, Itajaí, Brazil
| |
Collapse
|
12
|
Wound Healing and Anti-Inflammatory Effects of a Newly Developed Ointment Containing Jujube Leaves Extract. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121947. [PMID: 36556312 PMCID: PMC9785415 DOI: 10.3390/life12121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Ziziphus jujuba Mill. (jujube) is a well-known medicinal plant with pronounced wound healing properties. The present study aimed to establish the chemical composition of the lyophilized ethanolic extract from Romanian Ziziphus jujuba leaves and to evaluate the healing and anti-inflammatory properties of a newly developed lipophilic ointment containing 10% dried jujube leaves extract. The ultra-High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry method was used, and 47 compounds were detected, among them the novel epicatechin and caffeic acid. The extract contains significant amounts of rutin (29.836 mg/g), quercetin (15.180 mg/g) and chlorogenic acid (350.96 µg/g). The lipophilic ointment has a slightly tolerable pH, between 5.41-5.42, and proved to be non-toxic in acute dermal irritation tests on New Zealand albino rabbits and after repeated administration on Wistar rats. The ointment also has a healing activity comparable to Cicatrizin (a pharmaceutical marketed product) on Wistar rats and a moderate anti-inflammatory action compared to the control group, but statistically insignificant compared to indomethacin in the rat-induced inflammation test by intraplantar administration of kaolin. The healing and anti-inflammatory properties of the tested ointment are due to phenolic acids and flavonoids content, less because of minor components as apocynin, scopoletin, and isofraxidin.
Collapse
|
13
|
Anlas C, Bakirel T, Ustuner O, Ustun-Alkan F, Diren-Sigirci B, Koca-Caliskan U, Mancak- Karakus M, Dogan U, Ak S, Askin Akpulat H. In vitro Biological Activities and Preliminary Phytochemical Screening of Different Extracts from Achillea sintenisii Hub- Mor. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective. Int J Mol Sci 2022; 23:ijms23179573. [PMID: 36076971 PMCID: PMC9455684 DOI: 10.3390/ijms23179573] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Wound healing is a recovering process of damaged tissues by replacing dysfunctional injured cellular structures. Natural compounds for wound treatment have been widely used for centuries. Numerous published works provided reviews of natural compounds for wound healing applications, which separated the approaches based on different categories such as characteristics, bioactivities, and modes of action. However, current studies provide reviews of natural compounds that originated from only plants or animals. In this work, we provide a comprehensive review of natural compounds sourced from both plants and animals that target the different bioactivities of healing to promote wound resolution. The compounds were classified into four main groups (i.e., anti-inflammation, anti-oxidant, anti-bacterial, and collagen promotion), mostly studied in current literature from 1992 to 2022. Those compounds are listed in tables for readers to search for their origin, bioactivity, and targeting phases in wound healing. We also reviewed the trend in using natural compounds for wound healing.
Collapse
|
15
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
16
|
Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical Drugs in Traditional Chinese Medicine With Wound Healing Properties. Front Pharmacol 2022; 13:885484. [PMID: 35645789 PMCID: PMC9133888 DOI: 10.3389/fphar.2022.885484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.
Collapse
Affiliation(s)
| | | | | | | | - Feng Qiu
- *Correspondence: Feng Qiu, ; Xinchi Feng,
| |
Collapse
|
17
|
Villalva M, Santoyo S, Salas-Pérez L, Siles-Sánchez MDLN, Rodríguez García-Risco M, Fornari T, Reglero G, Jaime L. Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods 2021; 10:foods10092067. [PMID: 34574177 PMCID: PMC8472344 DOI: 10.3390/foods10092067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Melissa officinalis L. and Origanum majorana L., within Lamiaceae family, and Calendula officinalis L. and Achillea millefolium L., within the Asteraceae, have been considered a good source of bioactive ingredients with health benefits. In this study, the supercritical fluid extraction (SFE) using pure CO2, and the ultrasound assisted extraction (UAE) were proposed as green techniques to obtain plant-based extracts with potential antioxidant and anti-inflammatory activities. Higher values of total phenolic content and antioxidant activity were achieved in UAE ethanol:water (50:50, v/v) extracts. Meanwhile, UAE pure ethanol extracts showed greater anti-inflammatory activity. RP-HPLC-PAD-ESI-QTOF-MS/MS analysis showed a vast number of phenolic compounds in the extracts, including unreported ones. O. majorana ethanol:water extract presented the highest content of phenolics and antioxidant activity; among its composition, both rosmarinic acid and luteolin glucoside derivatives were abundant. The pure ethanol extract of A. millefolium resulted in an important content of caffeoylquinic acid derivatives, luteolin-7-O-glucoside and flavonoid aglycones, which could be related to the remarkable inhibition of TNF-α, IL-1β and IL-6 cytokines. Besides, borneol and camphor, found in the volatile fraction of A. millefolium, could contributed to this latter activity. Thus, this study points out that O. majorana and A. millefolium are considered a promising source of bioactive ingredients with potential use in health promotion.
Collapse
Affiliation(s)
- Marisol Villalva
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Lilia Salas-Pérez
- Faculty of Accounting and Administration, Universidad Autónoma de Coahuila, Fco. Javier Mina 150, Luis Echeverría Álvarez Sector Norte, 27085 Torreón, Coahuila, Mexico;
| | - María de las Nieves Siles-Sánchez
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Mónica Rodríguez García-Risco
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Tiziana Fornari
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
| | - Guillermo Reglero
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
- Imdea-Food Institute, Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049 Madrid, Spain; (M.V.); (S.S.); (M.d.l.N.S.-S.); (M.R.G.-R.); (T.F.); (G.R.)
- Correspondence: ; Tel.: +34-910-017-925
| |
Collapse
|
18
|
Singh A, Maqsood Z, Iqubal MK, Ali J, Baboota S. Compendium of Conventional and Targeted Drug Delivery Formulation Used for the Treatment and Management of the Wound Healing. Curr Drug Deliv 2021; 19:192-211. [PMID: 34315364 DOI: 10.2174/1567201818666210727165916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Wound healing is a complex and dynamic phenomenon that involves the restoration of normal physiology and functioning of injured tissue. The process of wound healing is primarily regulated by various cytokines, inflammatory mediators, and growth factors at the molecular level. Any intervention in the normal wound healing process leads to further tissue damage, which in turn leads to delayed wound healing. Several natural, synthetic drugs and their combinations were used to restored and accelerate the wound healing process. However, the conventional delivery carriers were not much effective, and thus, nowadays, nanocarriers are gaining much popularity since they are playing a pivotal role in drug delivery. Since nanocarriers have their own applicability and benefits (enhance the bioavailability, site-specific targeting) so, they can accelerate wound healing more efficiently. This review briefly discussed about the various events that take place during the wound healing process with emphasis on various natural, synthetic, and combination drug therapy used for accelerating wound healing and the role of nanotechnology-based approaches in chronic wound healing.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zeba Maqsood
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
19
|
Fana SE, Ahmadpour F, Rasouli HR, Tehrani SS, Maniati M. The effects of natural compounds on wound healing in Iranian traditional medicine: A comprehensive review. Complement Ther Clin Pract 2020; 42:101275. [PMID: 33429123 DOI: 10.1016/j.ctcp.2020.101275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Wounds are physical and anatomical disruption in healthy skin and represent an important healthcare concern around the world. Wound healing is a complex and dynamic cascade of cellular and molecular interactions which include four main phases: hemostasis, inflammatory, proliferative, and remodeling. Therefore, some pharmacological activities such as anti-inflammatory, antioxidant, and antimicrobial activities can play a key role in the process of wound healing. Iranian Traditional Medicine (ITM) has a rich background of practice and a wealth of ancient medicine scientists from the Old Persian days until today. This paper presents and characterizes pure data from original references of ITM about wound remedies and verifies their function by reviewing articles from three databases (Google Scholar, PubMed, and Scopus), which could be an interesting and comprehensive resource for future researchers interested in traditional medicine (TM) generally and in ITM in particular. Selected natural compounds from the references were divided into 5 groups, including herbs, herbal products, animal products, minerals, and animals. In total, 23 natural compounds with regard to the current state of knowledge and ITM were introduced and verified. The present review will provide better insights into ITM and its extensive experience in topics such as wound healing.
Collapse
Affiliation(s)
- Saeed Ebrahimi Fana
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fathollah Ahmadpour
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Rasouli
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran; Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Bottoni M, Milani F, Colombo L, Nallio K, Colombo PS, Giuliani C, Bruschi P, Fico G. Using Medicinal Plants in Valmalenco (Italian Alps): From Tradition to Scientific Approaches. Molecules 2020; 25:molecules25184144. [PMID: 32927742 PMCID: PMC7570945 DOI: 10.3390/molecules25184144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
This ethnobotanical survey was carried out in Caspoggio (Valmalenco, SO, Italy) with the purpose of investigating the traditional uses of medicinal plants. Moreover, a bibliographic research meant to validate or refute the uses, focusing on the potentially responsible compounds, was performed. Fifty-nine species, attributable to 30 families (Asteraceae, Pinaceae, Malvaceae, and Lamiaceae the most cited), were mentioned. Arnica montana, anti-inflammatory for traumas and musculoskeletal pains; Pinus mugo, expectorant; Malva sylvestris, anti-inflammatory and soothing; Achillea moschata, digestive. The compounds, responsible for the therapeutic activities, are often polyphenols and terpenoids: helenanin in A. montana, α-pinene, δ-3-carene, and limonene in P. mugo, gossypin and malvin in M. sylvestris, luteolin and apigenin in A. moschata. Scientific evidence for at least one of the traditional activities described was found for 50 species but only in 26 out of 196 works consulted, it is possible to make a comparison between investigated extracts and traditional preparations. This study is thus a stimulus to new phytochemical investigations, mimicking as much as possible the traditional preparations. This work is part of the European Interreg Italy-Switzerland B-ICE project, aimed at creating a management model for the ongoing climate change and searching for new sources of territory valorization as attractions for tourists.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Lorenzo Colombo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Kevin Nallio
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Paola Sira Colombo
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Claudia Giuliani
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| | - Piero Bruschi
- Department of Agricultural, Environmental, Food and Forestry Science and Technology, University of Florence, 50144 Florence, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Science, University of Milan, 20133 Milan, Italy
- Botanical Garden G.E. Ghirardi, Department of Pharmaceutical Science, University of Milan, Toscolano Maderno, 25088 Brescia, Italy
| |
Collapse
|
21
|
Chanaj-Kaczmarek J, Paczkowska M, Osmałek T, Kaproń B, Plech T, Szymanowska D, Karaźniewicz-Łada M, Kobus-Cisowska J, Cielecka-Piontek J. Hydrogel Delivery System Containing Calendulae flos Lyophilized Extract with Chitosan as a Supporting Strategy for Wound Healing Applications. Pharmaceutics 2020; 12:E634. [PMID: 32645859 PMCID: PMC7407229 DOI: 10.3390/pharmaceutics12070634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Calendulae flos is a valued plant material with known anti-inflammatory and antimicrobiological properties. The limitation for its use in the treatment of chronic wounds is the lack of adhesion to the required site of action. Obtaining the Calendulae flos lyophilized extract from water-ethanolic extract allowed to prepare valuable material whose biological activity in the wound healing process was confirmed by a positive result of the scratch test. The Calendulae flos lyophilized extract was standardized for the contents of the chlorogenic acid and the narcissin. The significant potency of the Calendulae flos pharmacological activity has become the reason for studies on its novel applications in combination with the multifunctional chitosan carrier, to create a new, valuable solution in the treatment of chronic wounds. The use of chitosan as a carrier allowed for the controlled release of the chlorogenic acid and the narcissin. These substances, characterized by prolonged release from the chitosan delivery system, were identified as well permeable, based on the results of the studies of the parallel artificial membrane permeability assay (PAMPA Skin) a model simulating permeability through membrane skin. The combination of the Calendulae flos lyophilized extract and the chitosan allowed for synergy of action towards hyaluronidase inhibition and effective microbiological activity. Optimization of the hypromellose hydrogel preparation ensuring the required rheological properties necessary for the release of the chlorogenic acid and the narcissin from the chitosan delivery system, as well as demonstrated antimicrobial activity allows indicating formulations of 3% Calendulae flos lyophilized extract with chitosan 80/500 in weight ratio 1:1 and 2% or 3% hypromellose as an important support with high compliance of response and effectiveness for patients suffering from chronic wounds.
Collapse
Affiliation(s)
- Justyna Chanaj-Kaczmarek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60781 Poznan, Poland; (J.C.-K.); (M.P.)
| | - Magdalena Paczkowska
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60781 Poznan, Poland; (J.C.-K.); (M.P.)
| | - Tomasz Osmałek
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60780 Poznan, Poland;
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Street, 20080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 4a Chodzki Street, 20093 Lublin, Poland;
| | - Daria Szymanowska
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 31 Wojska Polskiego Street, 60-634 Poznan, Poland;
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60781 Poznan, Poland;
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Wojska Polskiego 28, 60637 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60781 Poznan, Poland; (J.C.-K.); (M.P.)
| |
Collapse
|
22
|
Armour M, Semprini A, Ee C, MacCullagh L, Shortt N. Efficacy of a topical herbal and mineral formulation (Dynamiclear) for the treatment of herpes simplex labialis in the community setting: study protocol for a randomised, double-blind placebo-controlled trial. BMJ Open 2020; 10:e031876. [PMID: 31932389 PMCID: PMC7045020 DOI: 10.1136/bmjopen-2019-031876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Herpes simplex labialis (HSL) is a common infection that can cause painful lesions on the oral mucosa, commonly referred to as cold sores. Current biomedical treatments include topical aciclovir, which reduces the episode duration by an average of 0.5 days. This study will examine the efficacy and tolerability of an over-the-counter topical treatment, Dynamiclear in reducing duration and severity of HSL episodes. METHODS AND ANALYSIS This prospective, randomised, double-blind, placebo-controlled, multi-centre trial will recruit a minimum of 292 adult participants across Australia and New Zealand who present with a cold sore within 48 hours of onset. They will be randomly allocated in a 2:1 ratio to receive either topical Dynamiclear (active) or placebo. Dynamiclear's active ingredients are Hypericum perforatum, Calendula Officinalis and copper sulfate. A single topical treatment of active or placebo will be applied by a pharmacy-based investigator, and participants will be provided with a viral swab kit to confirm presence of herpes virus 1 or 2 from ulcerated lesions. Participants will receive reminders by email and/or SMS to complete an online daily diary assessing their cold sore lesion using a visual guide, and recording other symptoms on numeric scales until healed. The primary outcome variable is median duration of HSL episode in days (participant evaluated) from presentation to return to normal skin. Secondary outcomes include severity of lesion pain, itching, burning and tingling during the symptomatic phase and proportion of lesions progressing to ulceration. ETHICS AND DISSEMINATION Australian ethics approval from Western Sydney University Human Research Ethics Committee, ref: H12776. New Zealand Ethics approval from The Health and Disability Ethics Committees (HDEC) ref: 18/CEN/151. Results will be published in a peer-reviewed academic journal, presented at academic meetings and reported to participants TRIAL REGISTRATION NUMBERS: Australia and New Zealand Clinical Trials Registry (ACTRN12618000890235); Universal Trial Number (UTN) (U1111-1233-2426).
Collapse
Affiliation(s)
- Mike Armour
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Alex Semprini
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Carolyn Ee
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Lois MacCullagh
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Nick Shortt
- NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
- Medical Research Institute of New Zealand, Wellington, New Zealand
| |
Collapse
|
23
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
24
|
Givol O, Kornhaber R, Visentin D, Cleary M, Haik J, Harats M. A systematic review of
Calendula officinalis
extract for wound healing. Wound Repair Regen 2019; 27:548-561. [DOI: 10.1111/wrr.12737] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Or Givol
- Sackler School of MedicineTel Aviv University Tel Aviv Israel
- Department of Plastic and Reconstructive SurgerySheba Medical Center Tel Hashomer Israel
| | - Rachel Kornhaber
- Department of Plastic and Reconstructive SurgerySheba Medical Center Tel Hashomer Israel
- College of Health and MedicineUniversity of Tasmania Sydney New South Wales Australia
| | - Denis Visentin
- College of Health and MedicineUniversity of Tasmania Sydney New South Wales Australia
| | - Michelle Cleary
- College of Health and MedicineUniversity of Tasmania Sydney New South Wales Australia
| | - Josef Haik
- Sackler School of MedicineTel Aviv University Tel Aviv Israel
- Department of Plastic and Reconstructive SurgerySheba Medical Center Tel Hashomer Israel
- College of Health and MedicineUniversity of Tasmania Sydney New South Wales Australia
- University of Notre Dame Australia Fremantle Western Australia Australia
- Talpiot Leadership Program, Sheba Medical Center Tel Hashomer Israel
| | - Moti Harats
- Sackler School of MedicineTel Aviv University Tel Aviv Israel
- Department of Plastic and Reconstructive SurgerySheba Medical Center Tel Hashomer Israel
- University of Notre Dame Australia Fremantle Western Australia Australia
- Talpiot Leadership Program, Sheba Medical Center Tel Hashomer Israel
| |
Collapse
|
25
|
Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res 2019; 15:174. [PMID: 31133058 PMCID: PMC6537371 DOI: 10.1186/s12917-019-1854-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background Medicinal plants have been used traditionally since centuries for wound care and treatment of skin diseases both in human and animals. Skin diseases are one of the most common reasons for owners to take their dog to the veterinarian. The demands for treatment and prophylaxis of these diseases are broad. A wide range of bacteria including antibiotic-resistant bacteria can be involved, making the treatment challenging and bear an anthropo-zoonotic potential. The aim of this review is to systematically evaluate based on recent scientific literature, the potential of four medicinal plants to enrich the therapeutic options in pyoderma, canine atopic dermatitis, otitis externa, wounds and dermatophytosis in dogs. Results Based on four books and a survey among veterinarians specialized in phytotherapy, four medicinal plants were chosen as the subject of this systematic review: Calendula officinalis L. (Marigold), Hypericum perforatum L. agg. (St. John’s Wort), Matricaria chamomilla L. (syn. Matricaria recutita L., Chamomile) and Salvia officinalis L. (Sage). According to the PRISMA statement through literature research on two online databases a total of 8295 publications was screened and narrowed down to a final 138 publications for which full-text documents were analyzed for its content resulting in a total of 145 references (21 clinical, 24 in vivo and 100 in vitro references). Conclusions All four plants were proven to have antibacterial and antifungal effects of a rather broad spectrum including antibiotic-resistant bacteria. This makes them an interesting new option for the treatment of pyoderma, otitis externa, infected wounds and dermatophytosis. Marigold, St. John’s Wort and Chamomile showed wound-healing properties and are thus promising candidates in line to fill the therapeutic gap in canine wound-healing agents. St. John’s Wort and Chamomile also showed anti-inflammatory and other beneficial effects on healthy skin. Due to the wide range of beneficial effects of these medicinal plants, they should be taken into account for the treatment of dermatologic diseases in dogs at least in future clinical research. Electronic supplementary material The online version of this article (10.1186/s12917-019-1854-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milena Tresch
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Meike Mevissen
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Hannah Ayrle
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postbox 219, 5070, Frick, Switzerland
| | - Matthias Melzig
- Dahlem Centre of Plant Sciences, Institute of Pharmacy, Freie Universität Berlin, Koenigin-Luise-Strasse 2+4, 14195, Berlin, Germany
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012, Bern, Switzerland
| | - Michael Walkenhorst
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, Postbox 219, 5070, Frick, Switzerland.
| |
Collapse
|
26
|
Rameshk M, Sharififar F, Mehrabani M, Pardakhty A, Farsinejad A, Mehrabani M. Proliferation and In Vitro Wound Healing Effects of the Microniosomes Containing Narcissus tazetta L. Bulb Extract on Primary Human Fibroblasts (HDFs). Daru 2018; 26:10.1007/s40199-018-0211-7. [PMID: 30209758 PMCID: PMC6154482 DOI: 10.1007/s40199-018-0211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 01/30/2023] Open
Abstract
PURPOSE In Traditional Persian Medicine (TPM), different natural treatments have been suggested for skin damages such as Narcissus tazetta L. bulb application. New drug delivery systems such as niosomes have shown considerable increase transdermal drug delivery through stratum corneum, the main barrier against substances transport into skin. The aim of this study is preparation of niosomal formulations from N. tazetta bulb extract and evaluation of its in vitro wound healing effect. MATERIALS AND METHODS Non-ionic surfactant vesicles (NSVs or niosomes) were prepared by film hydration method from percolated extract of N. tazetta bulb. A number of 12 niosomal formulations (F1-F12) were prepared using different proportions of Span 60/Tween 60/cholesterol and 80% methanol-dissolved/aqueous PEN (percolation extract of N. tazetta) (30 and 50 mg/ml). Their morphology, particle size, physical and chemical stability and encapsulation efficiency was studied. In vitro wound healing effect of various concentrations of the best PEN niosomal formulation (F9) was evaluated in comparison to PEN on human dermal fibroblasts (HDFs). RESULTS Increasing the aqueous/methanolic PEN concentration from 3 to 5% resulted size reduction of NSVs with statistically significant difference (p < 0.05). F9 showed the most physicochemical stability and was chosen for in vitro wound healing effect. This formulation exhibited significantly effects (p < 0.05) on cell proliferation in HDF cells at 1.562 and 3.125 μg/ml compared with the untreated cells using neutral red assay. CONCLUSION Formulation of PEN in niosome carrier significantly decreased the gap width on human dermal fibroblasts. Graphical abstract Schematic processes of proliferation effect of narcisus tazetta bulb on fibroblast cells.
Collapse
Affiliation(s)
- Maryam Rameshk
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
- Faculty of Persian Medicine, Department of Traditional Pharmacy, Kerman University of Medical Sciences, Modiriat Street, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Blood Banking, faculty of allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Afzalipour School of Medicine, University of Shahid Bahonar, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center; Neuropharmacology Institute, Kerman University of Medical Sciences, Ibne cina street, Kerman, Iran
| |
Collapse
|
27
|
Carvalho AR, Diniz RM, Suarez MAM, Figueiredo CSSES, Zagmignan A, Grisotto MAG, Fernandes ES, da Silva LCN. Use of Some Asteraceae Plants for the Treatment of Wounds: From Ethnopharmacological Studies to Scientific Evidences. Front Pharmacol 2018; 9:784. [PMID: 30186158 PMCID: PMC6110936 DOI: 10.3389/fphar.2018.00784] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Severe wounds result in large lesions and/or loss of function of the affected areas. The treatment of wounds has challenged health professionals due to its complexity, especially in patients with chronic diseases (such as diabetes), and the presence of pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Taking this into consideration, the development of new therapies for wound healing requires immediate attention. Ethnopharmacological studies performed in different countries have shown the use of several plants from the Asteraceae family as wound-healing agents. Evidences gained from the traditional medicine have opened new ways for the development of novel and more efficient therapies based on the pharmacological properties of these plants. In this article, we discuss the literature data on the use of Asteraceae plants for the treatment of wounds, based on the ethnopharmacological relevance of each plant. Special attention was given to studies showing the mechanisms of action of Asteraceae-derived compounds and clinical trials. Ageratina pichinchensis (Kunth) R.M. King and H. Rob. and Calendula officinalis L. preparations/compounds were found to show good efficacy when assessed in clinical trials of complicated wounds, including venous leg ulcers and foot ulcers of diabetic patients. The compounds silibinin [from Silybum marianum (L.) Gaertn.] and jaceosidin (from Artemisia princeps Pamp.) were identified as promising compounds for the treatment of wounds. Overall, we suggest that Asteraceae plants represent important sources of compounds that may act as new and efficient healing products.
Collapse
Affiliation(s)
| | - Roseana M Diniz
- Programa de Pós-Graduação, Universidade Ceuma, São Luís, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Artem Ataide J, Caramori Cefali L, Machado Croisfelt F, Arruda Martins Shimojo A, Oliveira-Nascimento L, Gava Mazzola P. Natural actives for wound healing: A review. Phytother Res 2018; 32:1664-1674. [PMID: 29722075 DOI: 10.1002/ptr.6102] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Nature has been a source of medicinal treatments for thousands of years, with the use of plants as prototypes for drug development and for the extraction of active compounds. Skin injuries occur regularly in everyday life, and the human skin has the ability to promote repair spontaneously under healthy conditions. However, some intrinsic and external factors may interfere with skins' natural ability, leading to nonhealing lesions and chronic wounds, which directly affect health and quality of life. Thus, attention should be given to this health problem, using an appropriated management when necessary. In this scenario, phytotherapy may be an option for cutaneous wound treatment, although further high-quality studies are needed to firmly establish the clinical efficacy of plants. This article reviews traditionally used natural actives for wound healing, highlighting their characteristics and mode of action.
Collapse
Affiliation(s)
- Janaína Artem Ataide
- Graduate Program in Medical Sciences, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Letícia Caramori Cefali
- Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Machado Croisfelt
- Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andréa Arruda Martins Shimojo
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
29
|
Halder A, Mazumdar S, Das A, Karmakar P, Ghoshal D. A Schiff Base Macrocycle Ligand and Its Mg(II) and Cd(II) Complexes: Spectral Properties with Theoretical Understanding and Biological Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201702187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arijit Halder
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Swagata Mazumdar
- Department of Life Science and Biotechnology; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Anamika Das
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Debajyoti Ghoshal
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| |
Collapse
|
30
|
Doersch KM, Newell-Rogers MK. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression. Exp Biol Med (Maywood) 2017; 242:1424-1431. [PMID: 28549404 PMCID: PMC5544166 DOI: 10.1177/1535370217712961] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Overly fibrotic wound healing can lead to excess scar formation, causing functional impairment and undesirable cosmetic results. However, there are few successful treatments available to prevent or remediate scars. This study sought to explore the molecular mechanisms by which quercetin, a naturally-occurring antifibrotic agent, diminishes scar formation. Using both mice and fibroblast cells, we examined quercetin's impact on fibrosis and the wound healing rate, and potential molecular mechanisms underlying the quercetin-mediated reduction of fibrosis. While cultured fibroblasts demonstrated normal growth in response to quercetin, quercetin increased surface αV integrin and decreased β1 integrin. These changes in surface integrin expression may impact factors that contribute to fibrosis including cell migration, proliferation, and extracellular matrix production. In both quercetin-treated and control mice, wounds healed in about 14 days. Masson's trichrome stain revealed diminished fibrosis at the wound site in quercetin-treated animals despite the normal healing rate, indicating the potential for better cosmetic results without delaying healing. An in vitro scratch wound model using cells plated on an artificial extracellular matrix demonstrated delayed closure following quercetin treatment. The extracellular matrix also ameliorated quercetin's effect on αV integrin. Thus, αV integrin recruitment in response to quercetin treatment may promote the quercetin-mediated decrease extracellular matrix because cells require less extracellular matrix to migrate into a wound. With added extracellular matrix, β1 integrin remained diminished in response to quercetin, indicating that quercetin's effect on β1 integrin expression is independent of extracellular matrix -mediated signaling and is likely driven by inhibition of the intracellular mechanisms driving β1 expression. These findings suggest that quercetin could alter the cells' interactions with the extracellular matrix through the regulation of integrin expression to promote a decrease in fibrosis. Furthermore, this work demonstrates that this naturally occurring and commercially available supplement could be used to improve wound healing by impacting integrin expression, leading to a lower extracellular matrix requirement to achieve healing. Impact statement Scar formation during wound healing can be problematic for patients but there are limited therapies available to treat or prevent excess fibrosis at wound sites. This work examines the impact of quercetin, a flavonoid that decreases fibrosis, on wound healing, and relates quercetin's effects to changes in integrin expression on the surface of fibroblast cells. To our knowledge, this is the first report that quercetin alters integrin expression or that this impact may be part of the mechanism by which quercetin prevents fibrosis. This work demonstrates that quercetin can be used to modulate integrin expression and that this effect may in turn reduce fibrosis during wound healing. Furthermore, this paper identifies the modulation of integrin expression as a possible therapeutic target in preventing scars. This information could be used to improve therapeutics to aid in the cosmetic and functional results following wound healing.
Collapse
Affiliation(s)
- Karen M Doersch
- MD/PhD Program, Texas A&M Health Science Center College of Medicine, Temple, TX 76508, USA
- Department of Surgery, Texas A&M Health Science Center College of Medicine, Temple, TX 76508, USA
| | - M Karen Newell-Rogers
- Department of Surgery, Texas A&M Health Science Center College of Medicine, Temple, TX 76508, USA
- Department of Surgery, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
31
|
Das U, Behera SS, Pramanik K. Ethno-Herbal-Medico in Wound Repair: An Incisive Review. Phytother Res 2017; 31:579-590. [PMID: 28198058 DOI: 10.1002/ptr.5786] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/04/2025]
Abstract
Wound healing/cicatrization is a complex series of intricate processes that involve renewal of skin/epidermis after injury. A large number of ethno-medicinal plants/plant extracts are used by tribal and folklore traditions in developing world for the treatment of wounds, burns and cuts in distinct appearances. Moreover, plants/plant extracts have a significant history and successful clinical track record as indigenous drugs in wound repair systems. This review provides detailed information on molecular and cellular mechanism of plant/plant extracts on wound healing applications and further analyses the opportunities and scope with its future openings and prospects owing to the multifaceted challenges attached with neo-tissue regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Urmimala Das
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
32
|
Palliative Care in the Management of Pain, Odor, and Exudate in Chronic Wounds at the End of Life. J Hosp Palliat Nurs 2017. [DOI: 10.1097/njh.0000000000000306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|