1
|
Yan L, Huang B, Wang X, Jiang Y, Liu J, Jia X, Feng L, Yang B. The carrier function and inhibition effect on benign prostatic hyperplasia of a glucan from Epimedium brevicornu Maxim. Carbohydr Polym 2024; 340:122316. [PMID: 38858029 DOI: 10.1016/j.carbpol.2024.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Epimedium, a traditional Chinese medicine commonly used as a dietary supplement, contains polysaccharides and flavonoids as its main bioactive ingredients. In this study, a neutral homogeneous polysaccharide (EPSN-1) was isolated from Epimedium brevicornu Maxim. EPSN-1 was identified as a glucan with a backbone of →4)-α-D-Glcp-(1→, branched units comprised α-D-Glcp-(1→6)-α-D-Glcp-(1→, β-D-Glcp-(1→6)-β-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the C6 position of backbone. The conformation of EPSN-1 in aqueous solution indicated its potential to form nanoparticles. This paper aims to investigate the carrier and pharmacodynamic activity of EPSN-1. The findings demonstrated that, on the one hand, EPSN-1, as a functional ingredient, may load Icariin (ICA) through non-covalent interactions, improving its biopharmaceutical properties such as solubility and stability, thereby improving its intestinal absorption. Additionally, as an effective ingredient, EPSN-1 could help maintain the balance of the intestinal environment by increasing the abundance of Parabacteroides, Lachnospiraceae UGG-001, Anaeroplasma, and Eubacterium xylanophilum group, while decreasing the abundance of Allobaculum, Blautia, and Adlercreutzia. Overall, this dual action of EPSN-1 sheds light on the potential applications of natural polysaccharides, highlighting their dual role as carriers and contributors to biological activity.
Collapse
Affiliation(s)
- Lingling Yan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xueqing Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuchen Jiang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jialing Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Liu R, Sun Z, Wang S, Liu X, Man Y, Chen M, Liu Q, Wang C. Wenshenqianlie capsule improves benign prostatic hyperplasia via its anti-inflammatory and antioxidant effects. Aging (Albany NY) 2024; 16:12574-12592. [PMID: 39237304 PMCID: PMC11466478 DOI: 10.18632/aging.206103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Anti-inflammatory and antioxidant effects play crucial roles in the recovery of benign prostatic hyperplasia (BPH). Wenshenqianlie (WSQL) capsule, a typical traditional Chinese medicine formulation combining 14 Chinese herbs, has been reported to exert tonic effects on the kidneys and improve clinical symptoms of BPH. However, its potential antioxidative and anti-inflammatory properties and effects on the improvement of hormone levels have not been reported in depth. In this study, mice were subcutaneously injected with TP (5 mg/kg·d-1) to induce BPH. Forty-eight adult BALB/c male mice were randomly allocated to six groups based on the type of drug administered by gavage: control, BPH, BPH+WSQL (40 and 80 mg/kg·d-1), BPH+finasteride (1 mg/kg·d-1), and WSQL-only treated (80 mg/kg·d-1). We investigated the anti-inflammatory and antioxidant effect and mechanism of WSQL on BPH via histopathological examination, immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting combined with in vivo serum metabolomics, gut microbiomics analysis. WSQL alleviated prostate hyperplasia and reduced prostate-specific antigen, dihydrotestosterone, testosterone, and inflammation levels. Gut microbiomics and serum non-targeted metabolomics determined that the protective effect of WSQL against BPH may be related to the improvement of inflammation and testosterone-related gut microbiota and serum metabolites. Further studies showed that WSQL ameliorated nuclear factor-kappa B, its downstream inflammatory factors, and nuclear factor E2-related factor 2 pathway.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuhong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Wang YY, Zhu GQ, Xia K, Zeng HB, He YH, Xie H, Wang ZX, Xu R. Omentin-1 inhibits the development of benign prostatic hyperplasia by attenuating local inflammation. Mol Med 2024; 30:41. [PMID: 38519941 PMCID: PMC10960431 DOI: 10.1186/s10020-024-00805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.
Collapse
Affiliation(s)
- Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Kun Xia
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750000, Ningxia, China
| | - Hong-Bo Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yun-Hui He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Zhou H, Xu M, Pan Y, Wang S, Xu Z, Liu L, Liu X. The association between several serum micronutrients and benign prostatic hyperplasia: Results from NHANES 2003-2006. Prostate 2024; 84:212-220. [PMID: 37899678 DOI: 10.1002/pros.24641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common condition that affects the quality of life of older men. Specific micronutrients, including retinol, retinyl esters, carotenoids, vitamin E, and vitamin C, have antioxidant and anti-inflammatory properties. However, the correlation between serum concentrations of these micronutrients and BPH is unclear. METHODS We used data from the National Health and Nutrition Examination Survey (NHANES), which included 2067 representative US men. BPH was assessed using the self-reported questionnaire. This association was explored by adjusting for confounders using multivariate logistic regression. RESULTS After fully adjusting for confounders, for every 0.01 μmol/L increase in serum retinyl esters, the risk of BPH increased by 2% (OR = 1.02; 95% CI: 1.01-1.03; p = 0.006). Based on the Bonferroni-corrected p-value, we found this correlation to be significant. One μmol/L increase in total carotenoids was associated with a 22% increase in BPH risk (OR = 1.22; 95% CI: 1.03-1.46; p = 0.025). By analyzing the correlation between different types of carotenoids and BPH, we also found that β-carotenoids (OR = 1.43; 95% CI: 1.03-1.99; p = 0.036) was also positively correlated with BPH. The subgroup analysis revealed a positive correlation between serum vitamin E (OR = 1.02; 95% CI: 1.00-1.04; p = 0.018) and BPH in men under 60 years of age. Serum retinyl ester (OR = 1.02; 95% CI: 1.01-1.04; p = 0.008) and carotenoid (OR = 1.52; 95% CI: 1.22-1.87; p < 0.001) concentrations were positively correlated with BPH in men over 60 years of age. CONCLUSION Our study suggests that excessive serum retinyl esters, total carotenoids, and especially β-carotenoids are potential risk factors for BPH, and this association should be further investigated.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhunan Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Liu CM, Shao Z, Chen X, Chen H, Su M, Zhang Z, Wu Z, Zhang P, An L, Jiang Y, Ouyang AJ. Neferine attenuates development of testosterone-induced benign prostatic hyperplasia in mice by regulating androgen and TGF-β/Smad signaling pathways. Saudi Pharm J 2023; 31:1219-1228. [PMID: 37293563 PMCID: PMC10244910 DOI: 10.1016/j.jsps.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common urinary disease among the elderly, characterized by abnormal prostatic cell proliferation. Neferine is a dibenzyl isoquinoline alkaloid extracted from Nelumbo nucifera and has antioxidant, anti-inflammatory and anti-prostate cancer effects. The beneficial therapeutic effects and mechanism of action of neferine in BPH remain unclear. A mouse model of BPH was generated by subcutaneous injection of 7.5 mg/kg testosterone propionate (TP) and 2 or 5 mg/kg neferine was given orally for 14 or 28 days. Pathological and morphological characteristics were evaluated. Prostate weight, prostate index (prostate/body weight ratio), expression of type Ⅱ 5α-reductase, androgen receptor (AR) and prostate specific antigen were all decreased in prostate tissue of BPH mice after administration of neferine. Neferine also downregulated the expression of pro-caspase-3, uncleaved PARP, TGF-β1, TGF-β receptor Ⅱ (TGFBR2), p-Smad2/3, N-cadherin and vimentin. Expression of E-cadherin, cleaved PARP and cleaved caspase-3 was increased by neferine treatment. 1-100 μM neferine with 1 μM testosterone or 10 nM TGF-β1 were added to the culture medium of the normal human prostate stroma cell line, WPMY-1, for 24 h or 48 h. Neferine inhibited cell growth and production of reactive oxygen species (ROS) in testosterone-treated WPMY-1 cells and regulated the expression of androgen signaling pathway proteins and those related to epithelial-mesenchymal transition (EMT). Moreover, TGF-β1, TGFBR2 and p-Smad2/3, N-cadherin and vimentin expression were increased but E-cadherin was decreased after 24 h TGF-β1 treatment in WPMY-1 cells. Neferine reversed the effects of TGF-β1 treatment in WPMY-1 cells. Neferine appeared to suppress prostate growth by regulating the EMT, AR and TGF-β/Smad signaling pathways in the prostate and is suggested as a potential agent for BPH treatment.
Collapse
Affiliation(s)
- Chi-Ming Liu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - ZiChen Shao
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
- College of Chemistry and Bio-engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - XuZhou Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - HanWu Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - MengQiao Su
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
- College of Chemistry and Bio-engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - ZiWen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - ZhengPing Wu
- School of Aesthetic Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - Peng Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - LiJie An
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
- College of Chemistry and Bio-engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - YinJie Jiang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China
| | - Ai-Jun Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
6
|
Wang S, He W, Li W, Zhou JR, Du Z. Combination of Lycopene and Curcumin Synergistically Alleviates Testosterone-Propionate-Induced Benign Prostatic Hyperplasia in Sprague Dawley Rats via Modulating Inflammation and Proliferation. Molecules 2023; 28:4900. [PMID: 37446563 DOI: 10.3390/molecules28134900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a progressive urological disease occurring in middle-aged and elderly men, which can be characterized by the non-malignant overgrowth of stromal and epithelial cells in the transition zone of the prostate. Previous studies have demonstrated that lycopene can inhibit proliferation, while curcumin can strongly inhibit inflammation. This study aims to determine the inhibitory effect of the combination of lycopene and curcumin on BPH. METHOD To induce BPH models in vitro and in vivo, the BPH-1 cell line and Sprague Dawley (SD) rats were used, respectively. Rats were divided into six groups and treated daily with a vehicle, lycopene (12.5 mg/kg), curcumin (2.4 mg/kg), a combination of lycopene and curcumin (12.5 mg/kg + 2.4 mg/kg) or finasteride (5 mg/kg). Histologic sections were examined via hematoxylin and eosin (H&E) staining and immunohistochemistry. Hormone and inflammatory indicators were detected via ELISA. Network pharmacology analysis was used to fully predict the therapeutic mechanism of the combination of lycopene and curcumin on BPH. RESULTS Combination treatment significantly attenuated prostate hyperplasia, alleviated BPH pathological features and decreased the expression of Ki-67 in rats. The upregulation of the expression of testosterone, dihydrotestosterone (DHT), 5α-reductase, estradiol (E2) and prostate-specific antigen (PSA) in BPH rats was significantly blocked by the combination treatment. The expression levels of inflammatory factors including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were strongly inhibited by the combination treatment. From the network pharmacology analysis, it was found that the main targets for inhibiting BPH are AKT1, TNF, EGFR, STAT3 and PTGS2, which are enriched in pathways in cancer. CONCLUSION The lycopene and curcumin combination is a potential and more effective agent to prevent or treat BPH.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 511400, China
| | - Wenjiang He
- R&D Centre, Infinitus (China) Company Ltd., Guangzhou 510520, China
| | - Wenzhi Li
- R&D Centre, Infinitus (China) Company Ltd., Guangzhou 510520, China
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 511400, China
- Conney Allan Biotechnology Company Ltd., Guangzhou 510095, China
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 511400, China
| |
Collapse
|
7
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
8
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. Bisphenol A exposure triggers the malignant transformation of prostatic hyperplasia in beagle dogs via cfa-miR-204/KRAS axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113430. [PMID: 35325610 DOI: 10.1016/j.ecoenv.2022.113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The prostatic toxicity of bisphenol A (BPA) exposure is mainly associated with hormonal disturbances, thus interfering with multiple signal pathways and increasing the susceptibility to prostatic lesions. This study concentrates predominantly on the potential effect and mechanisms of low-dose BPA exposure on prostates in adult beagle dogs. The dogs were orally given BPA (2, 6, 18 μg/kg/day) and vehicle for 8 weeks, followed by blood collection and dissection. The ascended organ coefficient and volume of prostates, thickened epithelium, as well as histopathological observation have manifested that BPA exposure could trigger the aberrant prostatic hyperplasia in beagle dogs. Hormone level detection revealed that the ratios of estradiol (E2) to testosterone (T) (E2/T) and prolactin (PRL) to T (PRL/T) were up-regulated in the serum from BPA group. Based on microRNA (miRNA) microarray screening and functional enrichment analysis, BPA might facilitate the progression of prostate tumorigenesis in beagle dogs via cfa-miR-204 and its downstream target KRAS oncogene. Subsequently, the overexpression of KRAS, CDKN1A, MAPK1, VEGFA, BCL2 and PTGS2 was validated. These findings provide a series of underlying targets for preventing the initiation and metastasis of BPA-induced prostatic hyperplasia and tumorigenesis, while the regulatory relationship headed with KRAS requires further investigation.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai 200032, China; Department of Pharmacology & Toxicology, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China.
| |
Collapse
|
9
|
Alexandrov VA, Tochilnikov GV, Zhilinskaya NT, Gubareva EA, Romanov VA, Ermakova ED, Dorofeeva AA, Zmitrichenko YG, Tumanyan IA, Semenov AL. Therapeutic effect of iodised serum milk protein, lycopene and their combination on benign prostatic hyperplasia induced in rats. Andrologia 2021; 53:e14173. [PMID: 34185339 DOI: 10.1111/and.14173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common chronic disease in ageing men. Synthetic inhibitors of 5α-reductase commonly used in BPH treatment have limited effectiveness and may cause side effects. Evaluation of iodised serum milk protein and lycopene therapeutic effect in rat BPH model was the aim of the present study. BPH was induced in male Wistar rats by surgical castration and subsequent testosterone administrations (25 mg/kg, 7 injections). Rats with induced BPH received lycopene (5 mg/kg), iodised serum milk protein (200 µg/kg) or their combination for 1 month daily. The efficacy of the treatment was evaluated by the prostate weight, prostatic index and ventral lobe epithelium thickness. In lycopene and iodised serum milk protein-treated rats, prostate weight and prostatic index were significantly reduced compared to control group; and lycopene and iodised serum milk protein used in combination yielded an additive effect. Thus, further investigation of combined supplementation with micronutrients and plant-derived substances in BPH models may help to find new opportunities or its safe and effective treatment.
Collapse
Affiliation(s)
- Valerij A Alexandrov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | | | - Nadezhda T Zhilinskaya
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Vladimir A Romanov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Elena D Ermakova
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Anastasia A Dorofeeva
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yuliya G Zmitrichenko
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Irina A Tumanyan
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,International Research Centre 'Biotechnologies of the Third Millennium', ITMO University, St. Petersburg, Russia
| | - Alexander L Semenov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| |
Collapse
|
10
|
Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta 2021; 221:121635. [DOI: 10.1016/j.talanta.2020.121635] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
|
11
|
Zhang J, Zhang M, Tang J, Yin G, Long Z, He L, Zhou C, Luo L, Qi L, Wang L. Animal models of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 2020; 24:49-57. [PMID: 32873917 DOI: 10.1038/s41391-020-00277-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms are common clinical concerns that affect aging men all over the world. The underlying molecular and cellular mechanisms remain elusive. Over the past few years, a number of animal models of BPH, including spontaneous model, BPH-induction model, xenograft model, metabolic syndrome model, mechanical obstruction model, and transgenic model, have been established that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outlined the present status quo for animal models of BPH, comparing the pros and cons with respect to their ability to mimic the etiological, histological, and clinical hallmarks of BPH and discussed their applicability for future research.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengda Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chuanchi Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lufeng Luo
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Yang T, Huang Y, Zhou Y, Chen S, Wang H, Hu Y, Liu J, Jiang Z, Lu Q, Yin X. Simultaneous quantification of oestrogens and androgens in the serum of patients with benign prostatic hyperplasia by liquid chromatography-Tandem mass spectrometry. Andrologia 2020; 52:e13611. [PMID: 32441855 DOI: 10.1111/and.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is a common disease in elderly men. It has been found that the occurrence of BPH was closely related to dysregulated steroid hormones. Here, a rapid, sensitive, accurate and specific method for the quantitative profiling of five androgens in man serum was developed and validated by the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using this method, dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), androsterone (A), dihydrotestosterone (DHT), oestrone (E1) and oestradiol (E2) were quantified in serum from man with and without BPH. BPH patients were characterised by the decreases in DHEA, A4 and T as well as increases in DHT, E2 and E1 in serum. Meanwhile, DHEA and DHT in serum were screened as sensitive biomarkers of BPH patients. This study will provide a new perspective of dysregulated steroid hormones for the diagnosis and prevention of BPH.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuhan Huang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junjie Liu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Durazzo A, Lucarini M, Novellino E, Daliu P, Santini A. Fruit-based juices: Focus on antioxidant properties-Study approach and update. Phytother Res 2019; 33:1754-1769. [PMID: 31155809 DOI: 10.1002/ptr.6380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
This paper proposes a perspective literature review of the antioxidant properties in fruit-based juices. The total antioxidant properties due to compounds such as carotenoids, polyphenolic compounds, flavonoids, and tannins as well as the assessment of interactions between natural active compounds and other food matrix components can be seen as the first step in the study of potential health benefits of fruit-based juices. A brief summary is given on the significance of antioxidant properties of fruit juices, the conventional methods for antioxidant activity evaluation, and on the newly emerged sample analysis and data interpretation strategies, that is, chemometric analysis based on spectroscopic data. The effect of fruit processing techniques and the addition of ingredients on the antioxidant properties of fruit-based juices are also discussed.
Collapse
Affiliation(s)
| | | | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Patricia Daliu
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
14
|
Son BK, Kojima T, Ogawa S, Akishita M. Testosterone inhibits aneurysm formation and vascular inflammation in male mice. J Endocrinol 2019; 241:307-317. [PMID: 31018175 DOI: 10.1530/joe-18-0646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023]
Abstract
Abdominal aortic aneurysm (AAA), one of the pathological phenotypes of vascular aging, is characterized by aortic dilation with impaired arterial wall integrity. Recent epidemiologic studies have shown that men with AAA have lower serum testosterone compared to men without. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of testosterone on AAA formation using a murine AAA model under the conditions of depletion and administration of testosterone. In wild-type male mice (C57BL/6J), AAA was induced by CaCl2 application and angiotensin II infusion at 5 weeks after castration. Exacerbated AAA formation was seen in castrated mice, compared with sham-operated mice. Histological analysis revealed marked infiltration of macrophages in the destroyed aorta and IL-6/pSTAT3 expression was significantly elevated, suggesting that AAA development by castration is attributable to pronounced inflammation. Conversely, both 4-week and 9-week administration of testosterone significantly prevented AAA formation, and improvement of histological findings was confirmed. Aortic F4/80, Il-1b and Il-6 expression were significantly inhibited both by testosterone administration. Indeed, mice with implanted flutamide exhibited exacerbated AAA formation and aortic F4/80, Il-1b and Il-6 expression were significantly increased. Taken together, these results demonstrate that testosterone depletion and AR blockade precede AAA formation, and conversely, testosterone administration could suppress AAA formation by regulating macrophage-mediated inflammatory responses. This anti-inflammatory action of testosterone/AR on AAA formation might provide a mechanistic insight into the vascular protective actions of testosterone and suggest that its proper administration or selective AR modulators might be novel therapeutic strategies for this aortic pathology.
Collapse
Affiliation(s)
- Bo-Kyung Son
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Gerontology, The University of Tokyo, Tokyo, Japan
| | - Taro Kojima
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|