1
|
Ye JJ, Chen ZY, Wang QH, Liao XY, Wang XY, Zhang CC, Liu LR, Wei Q, Bao YG. Current treatment for male infertility: an umbrella review of systematic reviews and meta-analyses. Asian J Androl 2024; 26:645-652. [PMID: 39028629 DOI: 10.4103/aja202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.
Collapse
Affiliation(s)
- Jian-Jun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Yu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Hao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-Yang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Chi-Chen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Liang-Ren Liu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ge Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Simultaneous determination of multiple constituents of Qi-Lin pill by UPLC-MS/MS: Applications to pharmacokinetics and testicular tissue distribution in rats. J Pharm Biomed Anal 2022; 223:115157. [DOI: 10.1016/j.jpba.2022.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
|
4
|
Shan M, Zhang X, Fang X, Tian J, Song L, Chen Y, Qiu Z, Zhu D, Luo H, Wang Z. Structural analysis of Panax ginseng glycoproteins and its anti-oligoasthenozoospermia effect in vivo. Int J Biol Macromol 2021; 193:778-788. [PMID: 34743938 DOI: 10.1016/j.ijbiomac.2021.10.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
A component from ginseng in which sugars and proteins are covalently bound is named Panax ginseng glycoproteins (PGG). The contents of neutral carbohydrate, acid carbohydrate, and protein were 45.4%, 4.3% and 51.1%. The average molecular weight was 12,690 Da. The structure analysis showed that PGG had more than 1100 glycoproteins with molecular weight between 308.13 Da and 9991.52 Da, it was divided into two parts: long chain structure and short chain structure. These two parts were compared in molecular mass, number of amino acids, theoretical pI, instability index, aliphatic index and GRAVY. The in vivo distribution test of mice showed that PGG was enriched in mice testis, testicular tissue sections showed strong fluorescence signal expression on the surface of seminiferous tubules. We used cyclophosphamide (CP) to establish a mice model of oligoasthenozoospermia to investigate the anti-oligoasthenozoospermic effect of PGG. The results showed that PGG increased the levels of sex hormones T, FSH, PRL and sperm quality. Histopathology demonstrated that PGG promoted the differentiation process. The organ coefficient indicated that PGG had no obvious toxic and side effects. And the mechanism may be to affect the expression of protein levels such as p-ERK/ERK, p-AKT/AKT, Caspase-3, Bcl-2 and Bax. Therefore, PGG has the potential to develop into drugs for improving spermatogenic disorders.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; The first hospital of Jilin university, Changchun 130117, China
| | - Xiaoying Zhang
- The first hospital of Jilin university, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jianming Tian
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun 130012, China
| | - Lianlian Song
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun 130012, China
| | - Yinghong Chen
- Jilin Academy of Chinese Medicine and Material Medica Science, Changchun 130012, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
5
|
Bai X, Tang Y, Li Q, Liu D, Liu G, Fan X, Liu Z, Yu S, Tang T, Wang S, Li L, Zhou K, Zheng Y, Liu Z. An Integrated Analysis of Network Pharmacology, Molecular Docking, and Experiment Validation to Explore the New Candidate Active Component and Mechanism of Cuscutae Semen-Mori Fructus Coupled-Herbs in Treating Oligoasthenozoospermia. Drug Des Devel Ther 2021; 15:2059-2089. [PMID: 34040346 PMCID: PMC8139735 DOI: 10.2147/dddt.s307015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE One of the most common types of male infertility is recognized as oligoasthenozoospermia (OA), characterized by low sperm count and quality in males. As a traditional Chinese medicine (TCM), Cuscutae Semen-Mori Fructus coupled-herbs (CSMFCH) has been known to act a curative effect on OA for thousands of years. Nevertheless, the substantial basis and molecular mechanism of CSMFCH in treating OA remain elusive. METHODS Herein, an integrated approach, including network pharmacology, molecular docking, and experiment validation, was utilized to reveal the new candidate active component and mechanism of CSMFCH in treating OA. RESULTS The results show that kaempferol is the most significant bioactive component of CSMFCH on OA. The mechanism and targets of CSMFCH against OA are relevant to hormone regulation, oxidant stress, and reproductive promotion. In order to validate network pharmacology results, molecular docking and experiment validation were conducted. In detail, molecular docking was employed to verify the strong binding interactions between kaempferol and the core targets. UHPLC-Q-Orbitrap-MS was used to identify kaempferol in the CSMFCH extract. In vitro and in vivo experiments further proved CSMFCH and kaempferol could enhance the mouse Leydig (TM3) and mouse Sertoli (TM4) cell viability, improve the male reproductive organ weights, sperm quality, and decrease testis tissue damage in the OA mouse model induced by CP. CONCLUSION Our results not only identify the new candidate active component of CSMFCH in treating OA but also provide new insights into the mechanisms of CSMFCH against OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shujun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tian Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Chang Z, Bai X, Tang Y, Liu G, Liu D, Fan X, Tan T, Liu Z, Li J, Liu Z. Pharmacological mechanisms of Yishen Xingyang capsule in the treatment of oligoasthenospermia in rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Zhang T, Wang X, Wang Z, Xu Z, Chen L, Miao M, Wu B, Wang X, Shen X, Wu J, Wang K, Shi H, Li J, Zheng J. A Diagnostic Model to Improve the Predictability of Natural Pregnancy Potential in Patients with Oligoasthenospermia. Med Sci Monit 2020; 26:e922316. [PMID: 32890392 PMCID: PMC7491230 DOI: 10.12659/msm.922316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Oligoasthenospermia is one of the major reasons for male infertility in clinical practice. Nevertheless, some patients with oligoasthenospermia show normal fertility. Currently, there is a lack of an effective method to distinguish patients with oligoasthenospermia showing normal fertility from those who lack natural fertility and should participate in in vitro fertilization and assisted reproduction. MATERIAL AND METHODS In this study, we collected semen and blood samples from 153 males of Shui nationality at reproductive age in Guizhou Province, southwest China. We measured the routine parameters for semen and some serological indicators. A clinical diagnosis model was then constructed to evaluate the fertility potential of oligoasthenospermia patients using a logistic stepwise regression method, which was then visualized with a nomogram. RESULTS Our results showed that this model could effectively assess the natural pregnancy potential of patients with oligoasthenospermia, and its sensitivity and specificity were superior to those of a traditional model that used only sperm motility and count to assess male fertility potential (area under the curve=0.7626 vs. 0.6677). Additionally, we evaluated the clinical net benefit for patients with oligoasthenospermia at different risk scores in our model using decision curve analysis. The results showed that the net benefit was obtained at scores ranging from 0.1 to 0.6. CONCLUSIONS This comprehensive clinical prediction model can be used to determine whether infertile oligoasthenospermia patients lack natural fertility.
Collapse
Affiliation(s)
- Tiancheng Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Xin Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China (mainland)
| | - Zhikai Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China (mainland)
| | - Zhiming Xu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China (mainland)
| | - Liang Chen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China (mainland)
| | - Maohua Miao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Public School, Fudan University, Shanghai, China (mainland)
| | - Bin Wu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Xuemei Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Xiaorong Shen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Jun Wu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Ke Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| | - Jianhui Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of SIPPR, Fudan University, Shanghai, China (mainland)
| | - Jufen Zheng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
8
|
Salicioni AM, Gervasi MG, Sosnik J, Tourzani DA, Nayyab S, Caraballo DA, Visconti PE. Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraception†. Biol Reprod 2020; 103:264-274. [PMID: 32337545 PMCID: PMC7401350 DOI: 10.1093/biolre/ioaa064] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/14/2022] Open
Abstract
Male contraception is a very active area of research. Several hormonal agents have entered clinical trials, while potential non-hormonal targets have been brought to light more recently and are at earlier stages of development. The general strategy is to target genes along the molecular pathways of sperm production, maturation, or function, and it is predicted that these novel approaches will hopefully lead to more selective male contraceptive compounds with a decreased side effect burden. Protein kinases are known to play a major role in signaling events associated with sperm differentiation and function. In this review, we focus our analysis on the testis-specific serine kinase (TSSK) protein family. We have previously shown that members of the family of TSSKs are postmeiotically expressed in male germ cells and in mature mammalian sperm. The restricted postmeiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggests that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the Tssk6 knockout (KO) mice and of the double Tssk1 and Tssk2 KO mice and by the male subfertile phenotype observed in a Tssk4 KO mouse model.
Collapse
Affiliation(s)
- Ana M Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - María G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
| | - Julian Sosnik
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Darya A Tourzani
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Saman Nayyab
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Diego A Caraballo
- IFIBYNE-CONICET, Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
9
|
Tang XY, Zeng JX, Dai ZQ, Chen MH, Ye MN, Yao ZH, Dai Y, Yao XS. Identification and characterization of chemical constituents in Qi-Lin pills and their metabolites in rat bio-samples after oral administration using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2020; 188:113402. [PMID: 32544759 DOI: 10.1016/j.jpba.2020.113402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Qi-Lin pill (QLP), a traditional Chinese medicine prescription (TCMP), composed of fifteen herbal medicines, has been widely used for the treatment of male infertility. However, an in-depth understanding of the chemical constituents of QLP and its in vivo metabolic study is lacking. In this study, a method using ultra-performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was established for comprehensive analysis of chemical constituents of QLP and their metabolites in plasma, urine, bile and feces after gastric perfusion. The method guaranteed the fast discovery of representative structural fragment information and provided efficient structure clues for identification based on data from MSE mode. As a result, a total of 202 constituents were unambiguously identified or tentatively characterized. In addition, a total of 203 QLP-related xenobiotics were characterized, including 41 (22 prototypes and 19 metabolites) in plasma, 144 (47 prototypes and 97 metabolites) in urine, 50 (27 prototypes and 23 metabolites) in bile and 68 (51 prototypes and 17 metabolites) in feces. The metabolism reactions included phase I reactions (demethylation, hydroxylation, deglycosylation, deoxygenation, hydrogenation, dehydration, oxidation and hydrolysis) and phase II reactions (methylation, conjugation with glucuronide and sulfate). This was the first comprehensive investigation on chemical constituents and metabolic profiles of QLP in vivo, and the results provided chemical foundation for further research on effective substances and action mechanism of QLP.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jia-Xing Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Ming-Hao Chen
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Meng-Nan Ye
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
10
|
Zhang K, Fu L, An Q, Hu W, Liu J, Tang X, Ding Y, Lu W, Liang X, Shang X, Gu Y. Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complement Med Ther 2020; 20:42. [PMID: 32046715 PMCID: PMC7076898 DOI: 10.1186/s12906-019-2799-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Qilin pills (QLPs), a classic Traditional Chinese Medicine (TCM) formula for treating male infertility, effectively improve semen quality in clinical trials. This study was designed to evaluate the effects of QLPs on spermatogenesis, reproductive hormones, oxidative stress, and the testis-specific serinekinase-2 (TSSK2) gene in a rat model of oligoasthenospermia. METHODS Forty adult male Sprague-Dawley (SD) rats were randomly divided into four groups. The rat model with oligoasthenospermia was generated by intragastric administration of tripterygium glycosides (TGs) once daily for 4 weeks. Then, two treatment groups were given different doses (1.62 g/kg and 3.24 g/kg) of QLPs once daily for 60 days. Sperm parameters, testicular histology and reproductive hormone measurements, oxidative stress tests, and TSSK2 expression tests were carried out. RESULTS QLPs effectively improved semen parameters and testicular histology; restored the levels of FSH, LH, PRL, fT, and SHBG; reduced the levels of oxidative stress products (ROS and MDA); increased testicular SOD activity; and restored the expression of spermatogenesis-related gene TSSK2. CONCLUSION QLPs have a therapeutic effect on a rat model of oligoasthenospermia, and this effect is manifested as improvement of semen quality and testis histology, gonadal axis stability, decreased oxidative stress, and the regulation of testis-specific spermatogenesis-related gene TSSK2.
Collapse
Affiliation(s)
- Kaishu Zhang
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Longlong Fu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
| | - Qi An
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730 China
| | - Weihong Hu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Jianxin Liu
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Xiuming Tang
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Yu Ding
- Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| | - Wenhong Lu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
| | - Xiaowei Liang
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital Affiliated to Southern Medical University, Nanjing, 210002 China
| | - Yiqun Gu
- National Health and Family Planning Key Laboratory of Male Reproductive Health, Department of Male Clinical Research, National Research Institute for Family Planning & WHO Collaborating Center for Research in Human Reproduction, Beijing, 100081 China
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
11
|
Izzo AA. The clinical efficacy of herbal dietary supplements: A collection of recent systematic reviews and meta-analyses. Phytother Res 2018; 32:1423-1424. [PMID: 29917283 DOI: 10.1002/ptr.6128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Qilin pills alleviate oligoasthenospermia by inhibiting Bax-caspase-9 apoptosis pathway in the testes of model rats. Oncotarget 2018; 9:21770-21782. [PMID: 29774101 PMCID: PMC5955170 DOI: 10.18632/oncotarget.24985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
At present, the treatment of oligoasthenospermia with western medicine is ineffective. Qilin pill (QLP) is a Chinese traditional medicine for treating male infertility. Recent multicenter clinical studies in China reported that QLPs markedly improved sperm quality. However, the mechanism of action of QLPs on oligoasthenospermia remains unknown. In this study, we investigated the mechanistic basis for improvement of semen parameters and reversal of testis damage by QLPs in a rat model of oligoasthenospermia induced by treatment with tripterygium glycosides (TGs) (40 mg/kg) once daily for 4 weeks. Rats were administered QLPs (1.62 g/kg or 3.24 g/kg) each day for 60 days, with untreated animals serving as controls. The concentration and motility of sperm extracted from rat epididymis were determined, whereas histopathological examination and immunohistochemical apoptosis analysis of rat testes was performed. Expression profiles of apoptosis-related genes were determined by microarray analysis; the results were validated by quantitative real-time PCR, western blotting, and immunohistochemistry. Sperm concentration and motility in the QLP treatment group were increased relative to those in control rats. Testis tissue and DNA damage were reversed by QLP treatment. The improvement function of QLPs on sperm and testis works mainly by suppressing mitochondrial apoptosis in the testis via modulation of B cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), cytochrome C, caspase-9 and caspase-3 expression. QLPs could improve sperm quality and testis damage in a rat model of oligoasthenospermia by inhibiting the Bax-Caspase-9 apoptosis pathway and exerting therapeutic effects.
Collapse
|
13
|
Colalto C. What phytotherapy needs: Evidence-based guidelines for better clinical practice. Phytother Res 2017; 32:413-425. [DOI: 10.1002/ptr.5977] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Cristiano Colalto
- Farmacia San Paolo Dr. Colalto; P.zza De L'Osto 37 37035 San Giovanni Ilarione Verona Italy
| |
Collapse
|