1
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
2
|
Lotfi MS, Rassouli FB. Natural Flavonoid Apigenin, an Effective Agent Against Nervous System Cancers. Mol Neurobiol 2024; 61:5572-5583. [PMID: 38206472 DOI: 10.1007/s12035-024-03917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Cancer is a serious public health concern worldwide, and nervous system (NS) cancers are among the most life-threatening malignancies. Efforts have been devoted to introduce natural anticancer agents with minimal side effects. Apigenin is an edible flavonoid that is abundantly found in many vegetables and fruits. Various pharmaceutical activities, including anti-inflammatory, antioxidative, antimicrobial, and anticancer effects have been reported for apigenin. This review provides insights into the therapeutic effects of apigenin and flavonoids with similar structure on glioblastoma and neuroblastoma. Current evidence indicates that apigenin has the unique ability to cross the blood-brain barrier, and its antioxidative, anti-inflammatory, neurogenic, and neuroprotective effects have made this flavonoid a great option for the treatment of neurodegenerative disorders. Meanwhile, apigenin has low toxicity on normal neuronal cells, while induces cytotoxicity on NS cancer cells via triggering several signal pathways and molecular targets. Anticancer effects of apigenin have been contributed to various mechanisms such as induction of cell cycle arrest and apoptosis, and inhibition of migration, invasion, and angiogenesis. Although apigenin is a promising pharmaceutical agent, its low bioavailability is an important issue that must be solved before introducing to clinic. Recently, nano-delivery of apigenin by liposomes and poly lactic-co-glycolide nanoparticles has greatly improved functionality of this agent. Hence, investigating pharmaceutical effects of apigenin-loaded nanocarriers on NS cancer cell lines and animal models is recommended for future studies.
Collapse
Affiliation(s)
- Mohammad-Sadegh Lotfi
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Shakiba M, Rassouli FB. Joining up the scattered anticancer knowledge on auraptene and umbelliprenin: a meta-analysis. Sci Rep 2024; 14:11770. [PMID: 38783034 PMCID: PMC11116445 DOI: 10.1038/s41598-024-62747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Auraptene (AUR) and umbelliprenin (UMB) are naturally occurring prenylated coumarins that have demonstrated promising anticancer effects across various human cancer cell lines. This meta-analysis aimed to systematically assess, compare, and quantify the anticancer efficacy of AUR and UMB by synthesizing evidence from in vitro studies. A comprehensive literature search identified 27 eligible studies investigating AUR or UMB against cancer cells. Mixed-effects models revealed significant negative associations between coumarin dose and viability for AUR (est. = - 2.27) and UMB (est. = - 3.990), underscoring their dose-dependent cytotoxicity. Meta-regression indicated slightly higher potency for UMB over AUR, potentially due to increased lipophilicity imparted by additional isoprenyl units. Machine learning approaches identified coumarin dose and cancer type as the most influential determinants of toxicity, while treatment duration and the specific coumarin displayed weaker effects. Moderate (AUR) to substantial (UMB) between-study heterogeneity was detected, although the findings proved robust. In summary, this meta-analysis establishes AUR and UMB as promising natural anticancer candidates with clear dose-toxicity relationships across diverse malignancies. The structural insights and quantifications of anticancer efficacy can inform forthcoming efforts assessing therapeutic potential in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran.
| |
Collapse
|
4
|
Bernardo T, Behrends C, Klein D, Kuntze A, Timmermann B, von Neubeck C. Similar additive effects of doxorubicin in combination with photon or proton irradiation in soft tissue sarcoma models. Front Oncol 2023; 13:1211984. [PMID: 37503316 PMCID: PMC10368985 DOI: 10.3389/fonc.2023.1211984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
High-precision radiotherapy with proton beams is frequently used in the management of aggressive soft tissue sarcoma (STS) and is often combined with doxorubicin (Dox), the first-line chemotherapy for STS. However, current treatment approaches continue to result in high local recurrence rates often occurring within the treatment field. This strongly indicates the need of optimized treatment protocols taking the vast heterogeneity of STS into account, thereby fostering personalized treatment approaches. Here, we used preclinical STS models to investigate the radiation response following photon (X) or proton (H) irradiation alone and in combination with different treatment schedules of Dox. As preclinical models, fibrosarcoma (HT-1080), undifferentiated pleiomorphic sarcoma (GCT), and embryonal rhabdomyosarcoma (RD) cell lines were used; the latter two are mutated for TP53. The cellular response regarding clonogenic survival, apoptosis, cell-cycle distribution, proliferation, viability, morphology, and motility was investigated. The different STS cell types revealed a dose-dependent radiation response with reduced survival, proliferation, viability, and motility whereas G2/M phase arrest as well as apoptosis were induced. RD cells showed the most radiosensitive phenotype; the linear quadratic model fit could not be applied. In combined treatment schedules, Dox showed the highest efficiency when applied after or before and after radiation; Dox treatment only before radiation was less efficient. GCT cells were the most chemoresistant cell line in this study most probably due to their TP53 mutation status. Interestingly, similar additive effects could be observed for X or H irradiation in combination with Dox treatment. However, the additive effects were determined more frequently for X than for H irradiation. Thus, further investigations are needed to specify alternative drug therapies that display superior efficacy when combined with H therapy.
Collapse
Affiliation(s)
- Teresa Bernardo
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Behrends
- West German Proton Therapy Center Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
- Faculty of Physics, Technical University (TU) Dortmund University, Dortmund, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Kuntze
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- West German Proton Therapy Center Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Abolhassani Y, Mirzaei S, Nejabat M, Talebian S, Gholamhosseinian H, Iranshahi M, Rassouli FB, Jamialahmadi K. 7-Geranyloxcycoumarin enhances radio sensitivity in human prostate cancer cells. Mol Biol Rep 2023:10.1007/s11033-023-08439-9. [PMID: 37217617 DOI: 10.1007/s11033-023-08439-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Prostate cancer is the second most prevalent and the fifth deadliest cancer among men worldwide. To improve radiotherapy outcome, we investigated the effects of 7-geranyloxycoumarin, also known as auraptene (AUR), on radiation response of prostate cancer cells. METHODS AND RESULTS PC3 cells were pretreated with 20 and 40 µM AUR for 24, 48 and 72 h, followed by X-ray exposure (2, 4 and 6 Gy). After 72 h recovery, cell viability was determined by alamar Blue assay. Flow cytometric analysis was performed to assess apoptosis induction, clonogenic assay was carried out to investigate clonogenic survival, and the expression of P53, BAX, BCL2, CCND1 and GATA6 was analyzed by quantitative polymerase chain reaction (qPCR). Cell viability assay indicated that toxic effects of radiation was enhanced by AUR, which was also confirmed by increased numbers of apoptotic cells and reduced amount of survival fraction. The qPCR results demonstrated significant induction of P53 and BAX, while the expression of BCL2, GATA6, and CCND1 was significantly downregulated. CONCLUSION The findings of the present study indicated, for the first time, that AUR improved radio sensitivity in prostate cancer cells, and thus, has the potential to be used in future clinical trials.
Collapse
Affiliation(s)
- Yasaman Abolhassani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Mirzaei
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Nejabat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyedehsaba Talebian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Movaffagh J, Salari H, Merajifar E, Gholamhosseinian H, Shahroodi A, Iranshahi M, Rassouli FB. 7-geranyloxycoumarin enhanced radiotherapy effects on human gastric adenocarcinoma cells. J Cancer Res Ther 2023; 19:590-594. [PMID: 37470580 DOI: 10.4103/jcrt.jcrt_701_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Gastric adenocarcinoma (GA) is a serious malignancy with growing incidence and mortality rate worldwide. The objective of the present study was to determine whether 7-geranyloxycoumarin, a natural monoterpene coumarin, could induce anticancer effects, in single use and/or in combination with anticancer drugs and ionizing radiation, on GA cells. Materials and Methods 7-geranyloxycoumarin was synthesized by a reaction between 7-hydroxycoumarin and transgeranyl bromide. MKN45 cells were treated with 7-geranyloxycoumarin, and the viability of cells was determined by resazurin. Apoptosis was then evaluated by flow cytometric analysis using annexin V and propidium iodide, and the expression of P53 and BCL2 was analyzed by quantitative polymerase chain reaction (qPCR). Combinatorial effects of 7-geranyloxycoumarin with 5-fluorouracil (5-FU), cisplatin (CDDP), and X radiation were also evaluated. Results Assessment of cell viability indicated that 7-geranyloxycoumarin induced its toxic effects in a time- and dose-dependent manner. This was confirmed by the detection of apoptotic cells, and qPCR results revealed a significant downregulation in BCL2 expression. Although combinatorial use of 7-geranyloxycoumarin + 5-FU or + CDDP did not improve cytotoxicity of anticancer drugs, significant increase in the effectiveness of applied radiations was detected upon pretreatment with 7-geranyloxycoumarin. Conclusion Our findings provide valuable insights into single and combinatorial effects of 7-geranyloxycoumarin on the GA cells.
Collapse
Affiliation(s)
- Jebraeel Movaffagh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamide Salari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Merajifar
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Shahroodi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Bagheri R, Rassouli FB, Gholamhosseinian H, Ebrahimi K, Mahdavi S, Goudarzi S, Iranshahi M, Rafatpanah H, Keramati MR. Radiation Response of Human Leukemia/Lymphoma Cells was Improved by 7-Geranyloxycoumarin. Dose Response 2022; 20:15593258221124479. [PMID: 36158737 PMCID: PMC9500271 DOI: 10.1177/15593258221124479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives Adult T-cell leukemia/lymphoma (ATLL) is a blood neoplasm with specific geographic distribution. Although radiotherapy is a palliative treatment that provides long-term local control, single use of radiation leads to complications for patients. To introduce a novel multimodal approach against ATLL, we investigated combinatorial effects of 7-geranyloxycoumarin and radiation in vitro. Methods Viability of MT-2 cells was determined by resazurin assay upon administration of 7-geranyloxycoumarin alone and followed by radiation. Then, apoptosis was detected by annexin V and propidium iodide, and the expression of candidate genes was analyzed by qPCR. Results Findings revealed significant (P<.0001) improvement in radiation effects upon 7-geranyloxycoumarin pretreatment, most notably when cells were pretreated with 5 µg/ml 7-geranyloxycoumarin for 96 h, exposed to 6 Gy radiation and recovered for 48 h. These results were confirmed by flow cytometry, as the percentage of early and late apoptotic cells was increased after combinatorial treatment. In addition, significant (P< .0001) changes in CD44, c-MYC, cFLIPL, BMI-1, NF-κB (Rel A), and P53 expression was induced by 7-geranyloxycoumarin and radiation. Conclusions Current research indicated, for the first time, that combinatorial use of 7-geranyloxycoumarin and ionizing radiation could be considered as an effective therapeutic modality for ATLL.
Collapse
Affiliation(s)
- Ramin Bagheri
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Keyhan Ebrahimi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sajad Goudarzi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Evidence for Anticancer Effects of Chinese Medicine Monomers on Colorectal Cancer. Chin J Integr Med 2022; 28:939-952. [PMID: 35419728 DOI: 10.1007/s11655-022-3466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
Colorectal cancer is one of the most commonly occurring cancers worldwide. Although clinical reports have indicated the anticancer effects of Chinese herbal medicine, the multiple underlying molecular and biochemical mechanisms of action remain to be fully characterized. Chinese medicine (CM) monomers, which are the active components of CM, serve as the material basis of the functional mechanisms of CM. The aim of this review is to summarize the current experimental evidence from in vitro, in vivo, and clinical studies for the effects of CM monomers in colorectal cancer prevention and treatment, providing some useful references for future research.
Collapse
|
9
|
Kazemi M, Kouhpeikar H, Delbari Z, Khodadadi F, Gerayli S, Iranshahi M, Mosavat A, Behnam Rassouli F, Rafatpanah H. Combination of auraptene and arsenic trioxide induces apoptosis and cellular accumulation in the subG1 phase in adult T-cell leukemia cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1643-1649. [PMID: 35432798 PMCID: PMC8976908 DOI: 10.22038/ijbms.2021.58633.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Objectives Despite advances in the treatment of adult T-cell leukemia/lymphoma (ATLL), the survival rate of this malignancy remains significantly low. Auraptene (AUR) is a natural coumarin with broad-spectrum anticancer activities. To introduce a more effective therapeutic strategy for ATLL, we investigated the combinatorial effects of AUR and arsenic trioxide (ATO) on MT-2 cells. Materials and Methods The cells were treated with different concentrations of AUR for 24, 48, and 72 hr, and viability was measured by alamarBlue assay. Then, the combination of AUR (20 μg/ml) and ATO (3 μg/ml) was administrated and the cell cycle was analyzed by PI staining followed by flow cytometry analysis. In addition, the expression of NF-κB (REL-A), CD44, c-MYC, and BMI-1 was evaluated via qPCR. Results Assessment of cell viability revealed increased toxicity of AUR and ATO when used in combination. Our findings were confirmed by accumulation of cells in the sub G1 phase of the cell cycle and significant down-regulation of NF-κB (REL-A), CD44, c-MYC, and BMI-1. Conclusion Obtained findings suggest that combinatorial use of AUR and ATO could be considered for designing novel chemotherapy regimens for ATLL.
Collapse
Affiliation(s)
- Mohaddeseh Kazemi
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Delbari
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Khodadadi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Gerayli
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Fatemeh Behnam Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Tayarani-Najaran Z, Tayarani-Najaran N, Eghbali S. A Review of Auraptene as an Anticancer Agent. Front Pharmacol 2021; 12:698352. [PMID: 34239445 PMCID: PMC8258114 DOI: 10.3389/fphar.2021.698352] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Auraptene is a bioactive monoterpene coumarin isolated from Citrus aurantium and Aegle marmelos that belong to the Rutaceae family. Auraptene can modulate intracellular signaling pathways that control cell growth, inflammation and apoptosis and can exert pharmacological properties such as anti-bacterial, anti-fungal, antileishmania and anti-oxidant activity. Auraptene had inhibitory and chemo-preventive effects on the proliferation, tumorigenesis and growth of several cancer cell lines through increase in the activity of glutathione S-transferase, formation of DNA adducts and reduction of the number of aberrant crypt foci. Auraptene exhibits anticancer effects via targeting different cell signaling pathways such as cytokines, genes modulating cellular proliferation, growth factors, transcription factors and apoptosis. The present review is a detailed survey of scientific researches on the cytotoxicity and anticancer activity of Auraptene on cancer cells and tumor bearing animals.
Collapse
Affiliation(s)
- Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nilufar Tayarani-Najaran
- Department of Prosthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Eghbali
- Department of Pharmacognosy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
11
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep 2021; 11:8258. [PMID: 33859324 PMCID: PMC8050271 DOI: 10.1038/s41598-021-87850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.,Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Rei Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| |
Collapse
|
12
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Cao Z, Li W, Liu R, Li C, Song Y, Liu G, Chen Y, Lu C, Lu A, Liu Y. pH-Responsive Fluorescence Enhanced Nanogel for Targeted Delivery of AUR and CDDP Against Breast Cancer. Int J Nanomedicine 2020; 15:8369-8382. [PMID: 33149581 PMCID: PMC7605673 DOI: 10.2147/ijn.s274842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Auraptene (AUR), a natural bioactive prenyloxy coumarin, is a highly pleiotropic molecule that can bind to the MT1 receptor and can effectively reduce the proliferation and migration of breast cancer cells. Cisplatin (CDDP), as the first synthetic platinum-based anticancer drug, is widely used in the clinic due to its definite mechanism and therapeutic effect on diverse tumors. However, both of AUR and CDDP exhibit some disadvantages when used alone, including poor solubility, low bioavailability, lack of selectivity and systemic toxicity when they are used singly. Methods Therefore, the biodegradable materials hyaluronic acid (HA) and β-cyclodextrin derivative (mono-(6-amino-mono-6-deoxy)-β-CD, CD) were employed as carriers to load AUR and CDDP to form nanogel (CDDPHA-CD@AUR) capable of dual-targeted delivery and synergistic therapy for breast cancer and cell imaging. Results With the help of the CDDP-crosslinked CD-loaded structure, the newly synthesized nanogel exhibited excellent physiological stability and fluorescence effects. The release of AUR and CDDP was affected by the pH value, which was beneficial to the selective release in the tumor microenvironment. Cell experiments in vitro demonstrated that the nanogel could be selectively internalized by MCF-7 cells and exhibited low cytotoxicity to HK-2 cells. Antitumor experiments in vivo showed that the nanogel have better antitumor effects and lower systemic toxicity. Conclusion Based on these, the nanogel loaded with AUR and CDDP have the potential for targeted delivery against breast cancer.
Collapse
Affiliation(s)
- Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, People's Republic of China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
14
|
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front Pharmacol 2020; 11:832. [PMID: 32636741 PMCID: PMC7317022 DOI: 10.3389/fphar.2020.00832] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in the treatment of cancers. MDR cancer cells are resistant to multiple anticancer drugs. One of the major mechanisms of MDR is the efflux of anticancer drugs by ABC transporters. Increased activity and overexpression of these transporters are important causes of drug efflux and, therefore, resistance to cancer chemotherapy. Overcoming MDR is a fundamental prerequisite for developing an efficient treatment of cancer. To date, various types of ABC transporter inhibitors have been employed but no effective anticancer drug is available at present, which can completely overcome MDR. Phytochemicals can reverse MDR in cancer cells via affecting the expression or activity of ABC transporters, and also through exerting synergistic interactions with anticancer drugs by addressing additional molecular targets. We have listed numerous phytochemicals which can affect the expression and activity of ABC transporters in MDR cancer cell lines. Phytochemicals in the groups of flavonoids, alkaloids, terpenes, carotenoids, stilbenoids, lignans, polyketides, and curcuminoids have been examined for MDR-reversing activity. The use of MDR-reversing phytochemicals with low toxicity to human in combination with effective anticancer agents may result in successful treatment of chemotherapy-resistant cancer. In this review, we summarize and discuss published evidence for natural products with MDR modulation abilities.
Collapse
Affiliation(s)
- Boshra Tinoush
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Salari H, Afkhami-Poostchi A, Soleymanifard S, Nakhaei-Rad S, Merajifar E, Iranshahi M, Matin MM, Rassouli FB. Coadministration of auraptene and radiotherapy; a novel modality against colon carcinoma cells in vitro and in vivo. Int J Radiat Biol 2020; 96:1051-1059. [PMID: 32412318 DOI: 10.1080/09553002.2020.1770359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Use of ionizing radiation (IR) is a common therapeutic modality for patients with colon carcinoma, although resistance of cancer cells and unintended toxicity reduce clinical outcomes.Purpose: To enhance radioresponse of colon cancer cells, we designed a novel approach using auraptene (AUR) in combination with ionizing radiation (IR).Methods: For in vitro studies, CT26 cells were pretreated with AUR and irradiated at different doses. Then, cell viability was evaluated by alamarBlue assay, and the mechanism of cell death was elucidated using annexin V-PI. To determine efficacy of our combined therapeutic modality in vivo, AUR was injected intraperitoneally to murine models of colon carcinoma followed by IR, and then quantitative measurements and histopathological examinations were performed. For molecular analyses, real time PCR and Western blot were carried out.Results: Assessment of cell viability indicated significant enhancement of IR effects by AUR that was also confirmed by increased number of apoptotic cells. In vivo studies further demonstrated improved outcome in IR, since significant regression in tumor size was observed after administration of AUR + IR. Molecular analyses revealed down regulation of Cyclin D1 and CD44, along with involvement of PI3K-AKT-mTORC signaling pathway and Caspase-3 in observed combinatorial effects.Conclusion: Taken together, current findings support our previous reports on sensitizing effects of AUR and that AUR could be used as a promising adjunct to IR in cancer treatment.
Collapse
Affiliation(s)
- Hamide Salari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amin Afkhami-Poostchi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Saeideh Nakhaei-Rad
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elahe Merajifar
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Moussavi M, Haddad F, Matin MM, Iranshahi M, Rassouli FB. Efficacy of hyperthermia in human colon adenocarcinoma cells is improved by auraptene. Biochem Cell Biol 2017; 96:32-37. [PMID: 28915362 DOI: 10.1139/bcb-2017-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colon adenocarcinoma is one of the most common cancers worldwide, and resistance to current therapeutic modalities is a serious drawback in its treatment. Auraptene is a natural coumarin with considerable anticancer effects. The goal of this study was to introduce a novel combinatorial approach for treatment against colon adenocarcinoma cells. To do so, HT29 cells were pretreated with nontoxic auraptene and then hyperthermia was induced. Afterwards, the viability of the cells was assessed, changes induced in the cell cycle were analyzed, and the expression patterns of candidate genes were studied. Results from the MTT assay demonstrated significant (p < 0.01) decreases in cell viability when 20 μg/mL auraptene was used for 72 h, heat shock was induced, and cells were allowed to recover for 24 h. Flow cytometry analysis also indicated considerable changes in the distribution of cells between the sub-G1/G1 and G2/M phases of cell cycle after the combinatorial treatment. Real-time RT-PCR studies revealed significant (p < 0.01) up-regulation of P21 in the cells pretreated with auraptene after heat shock, whereas no significant change was observed in HSP27 expression. Our findings not only indicate, for the first time, that the efficacy of hyperthermia was improved by auraptene pretreatment, but also suggest that this coumarin could be used in the future to achieve more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Mahdi Moussavi
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farhang Haddad
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,b Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Iranshahi
- c Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- a Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,b Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|