1
|
Liu L, Tang L, Wang Y, Liu S, Zhang Y. Expression of ITPR2 regulated by lncRNA-NONMMUT020270.2 in LPS-stimulated HT22 cells. Heliyon 2024; 10:e33491. [PMID: 39040287 PMCID: PMC11260991 DOI: 10.1016/j.heliyon.2024.e33491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Background Long non-coding RNA (lncRNA)-NONMMUT020270.2 is downregulated and co-expressed with inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) in the hippocampus of Alzheimer's disease (AD) mice. However, whether the expression of ITPR2 was regulated by lncRNA-NONMMUT020270.2 remains unclear. we aimed to investigate regulating relationship of lncRNA-NONMMUT020270.2 and ITPR2. Methods HT22 cells were firstly transfected with the pcDNA3.1-lncRNA-NONMMUT020270.2 overexpression plasmid or with the lncRNA-NONMMUT020270.2 smart silencer, and then were stimulated with lipopolysaccharide (LPS) for 24h. The mRNA expression levels of lncRNA-NONMMUT020270.2 and ITPR2 were measured by reverse transcription-quantitative PCR. Cell viability was assessed using a Cell Counting Kit 8 assay. The expression of Aβ1-42 was detected by ELISA. The expression levels of p-tau, caspase-1, and inositol trisphosphate receptor (IP3R) proteins were detected by western-blotting. Nuclear morphological changes were detected by Hoechst staining. Flow cytometry and Fluo-3/AM were carried out to determine cell apoptosis and the intracellular Ca2+. Results LPS significantly decreased cell viability, and ITPR2 mRNA and IP3R protein expression levels. While it markedly enhanced the expression levels of p-tau and Aβ1-42, cell apoptosis rate, as well as intracellular Ca2+ concentration (P < 0.05). In addition, lncRNA-NONMMUT020270.2 overexpression significantly increased the expressions levels of ITPR2 mRNA and IP3R protein (P < 0.05), and inhibited expression of p-tau and Aβ1-42, cell apoptosis rate, and reduced intracellular Ca2+ concentration (P < 0.05). By contrast, lncRNA-NONMMUT020270.2 silencing notably downregulated expressions levels of ITPR2 mRNA and IP3R protein (P < 0.05), and elevated expression levels of p-tau and Aβ1-42, cell apoptosis rate, and intracellular Ca2+ concentration (P < 0.05). Conclusion lncRNA-NONMMUT020270.2 was positively correlated with ITPR2 expression in LPS-induced cell. Downregulating the lncRNA-NONMMUT020270.2 and ITPR2 may promote cell apoptosis and increase intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Lan Liu
- Medical College, Tibet University, Lhasa, Tibet, 850000, People's Republic of China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Liang Tang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yan Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Shanling Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yongcang Zhang
- Medical College, Tibet University, Lhasa, Tibet, 850000, People's Republic of China
| |
Collapse
|
2
|
McNearney TA, Westlund KN. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. Int J Mol Sci 2023; 24:13196. [PMID: 37686003 PMCID: PMC10488196 DOI: 10.3390/ijms241713196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.
Collapse
Affiliation(s)
- Terry A. McNearney
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA;
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
| | - Karin N. Westlund
- Department of Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
3
|
Ma HH, Wen JR, Fang H, Su S, Wan C, Zhang C, Lu FM, Fan LL, Wu GL, Zhou ZY, Qiao LJ, Zhang SJ, Cai YF. Hydroxysafflor Yellow A Exerts Neuroprotective Effect by Reducing Aβ Toxicity Through Inhibiting Endoplasmic Reticulum Stress in Oxygen-Glucose Deprivation/Reperfusion Cell Model. Rejuvenation Res 2023; 26:57-67. [PMID: 36734410 DOI: 10.1089/rej.2022.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ischemia stroke is thought to be one of the vascular risks associated with neurodegenerative diseases, such as Alzheimer's disease (AD). Hydroxysafflor yellow A (HSYA) has been reported to protect against stroke and AD, while the underlying mechanism remains unclear. In this study, SH-SY5Y cell model treated with oxygen-glucose deprivation/reperfusion (OGD/R) was used to explore the potential mechanism of HSYA. Results from cell counting kit-8 (CCK-8) showed that 10 μM HSYA restored the cell viability after OGD 2 hours/R 24 hours. HSYA reduced the levels of malondialdehyde and reactive oxygen species, while improved the levels of superoxide dismutase and glutathione peroxidase. Furthermore, apoptosis was inhibited, and the expression of brain-derived neurotrophic factor was improved after HSYA treatment. In addition, the expression levels of amyloid-β peptides (Aβ) and BACE1 were decreased by HSYA, as well as the expression levels of binding immunoglobulin heavy chain protein, PKR-like endoplasmic reticulum (ER) kinase pathway, and activating transcription factor 6 pathway, whereas the expression level of protein disulfide isomerase was increased. Based on these results, HSYA might reduce Aβ toxicity after OGD/R by interfering with apoptosis, oxidation, and neurotrophic factors, as well as relieving ER stress.
Collapse
Affiliation(s)
- Hui-Han Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jun-Ru Wen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chao Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ling-Ling Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zi-Yi Zhou
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Carnosic Acid Attenuates AβOs-Induced Apoptosis and Synaptic Impairment via Regulating NMDAR2B and Its Downstream Cascades in SH-SY5Y Cells. Mol Neurobiol 2023; 60:133-144. [PMID: 36224322 DOI: 10.1007/s12035-022-03032-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022]
Abstract
Neuronal death and synaptic loss are principal pathological features of Alzheimer's disease (AD). Amyloid beta oligomers (AβOs) constitute the main neurotoxin underscoring AD pathology. AβOs interact with N-methyl-D-aspartate receptors (NMDARs), resulting in neurotoxic events, including activation of apoptosis and synaptic impairment. Carnosic acid (CA), extracted from Salvia rosmarinus, has been verified its neuroprotective effects in AD. However, the precise mechanisms by which CA induces synaptic protection remain unclear. In this study, we established an in vitro AD model using SH-SY5Y human neuroblastoma cells. We observed that CA improved neuronal survival by suppressing apoptosis. Moreover, CA restored synaptic impairments by increasing expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and synaptophysin (Syn). Furthermore, we found these protective effects were dependent on inhibiting the phosphorylation of NMDAR subtype 2B (NMDAR2B), which further suppressed calcium overload and promoted activation of the extracellular signal-regulated kinase (ERK)-cAMP response element-binding protein (CREB) pathway. Administration of N-methyl-D-aspartic acid (NMDA), an agonist of NMDARs, abolished these effects of CA. Our findings demonstrate that CA exerts neuroprotective effects in an in vitro model of AD by regulating NMDAR2B and its downstream cascades, highlighting the therapeutic potential of CA as a NMDARs-targeted candidate in the treatment of AD.
Collapse
|
5
|
Pradhan LK, Sahoo PK, Chauhan S, Das SK. Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. J Mol Neurosci 2022; 72:1143-1165. [PMID: 35553375 DOI: 10.1007/s12031-022-02009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
Abstract
Since the report of "a peculiar severe disease process of the cerebral cortex" by Alois Alzheimer in 1906, it was considered to be a rare condition characterized by loss of cognition, memory impairment, and pathological markers such as senile plaques or neurofibrillary tangles (NFTs). Later on, the report was published in the textbook "Psychiatrie" and the disease was named as Alzheimer's disease (AD) and was known to be the consequences of aging; however, owing to its complex etiology, there is no cure for the progressive neurodegenerative disorder. Our current understanding of the mechanisms involved in the pathogenesis of AD is still at the mechanistic level. The treatment strategies applied currently only alleviate the symptoms and co-morbidities. For instance, the available treatments such as the usage of acetylcholinesterase inhibitors and N-methyl D-aspartate antagonists have minimal impact on the disease progression and target the later aspects of the disease. The recent advancements in the last two decades have made us more clearly understand the pathophysiology of the disease which has led to the development of novel therapeutic strategies. This review gives a brief idea about the various facets of AD pathophysiology and its management through modern investigational therapies to give a new direction for development of targeted therapeutic measures.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar-751023, India.
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India.
| |
Collapse
|
6
|
The Potential Effects of Phytoestrogens: The Role in Neuroprotection. Molecules 2021; 26:molecules26102954. [PMID: 34065647 PMCID: PMC8156305 DOI: 10.3390/molecules26102954] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Phytoestrogens are naturally occurring non-steroidal phenolic plant compounds. Their structure is similar to 17-β-estradiol, the main female sex hormone. This review offers a concise summary of the current literature on several potential health benefits of phytoestrogens, mainly their neuroprotective effect. Phytoestrogens lower the risk of menopausal symptoms and osteoporosis, as well as cardiovascular disease. They also reduce the risk of brain disease. The effects of phytoestrogens and their derivatives on cancer are mainly due to the inhibition of estrogen synthesis and metabolism, leading to antiangiogenic, antimetastatic, and epigenetic effects. The brain controls the secretion of estrogen (hypothalamus-pituitary-gonads axis). However, it has not been unequivocally established whether estrogen therapy has a neuroprotective effect on brain function. The neuroprotective effects of phytoestrogens seem to be related to both their antioxidant properties and interaction with the estrogen receptor. The possible effects of phytoestrogens on the thyroid cause some concern; nevertheless, generally, no serious side effects have been reported, and these compounds can be recommended as health-promoting food components or supplements.
Collapse
|
7
|
Yang Q, Zhang Y, Zhang L, Li X, Dong R, Song C, Cheng L, Shi M, Zhao H. Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway. Nutr Neurosci 2021; 25:1909-1927. [PMID: 33871312 DOI: 10.1080/1028415x.2021.1913929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Many studies have examined the beneficial effects of tea polyphenols (TP) and proanthocyanidins (PC) on the memory impairment in different animal models. However, the combined effects of them on synaptic, memory dysfunction and molecular mechanisms have been poorly studied, especially in the menopause-related memory decline in rats. METHODS In this rat study, TP and PC were used to investigate their protective effects on memory decline caused by inflammation. We characterized the learning and memory abilities, synaptic plasticity, AMPAR, phosphorylation of the p38 protein, TNF-ɑ, structural synaptic plasticity-related indicators in the hippocampus. RESULTS The results showed that deficits of learning and memory in OVX + D-gal rats, which was accompanied by dendrites and synaptic morphology damage, and increased expression of Aβ1-42 and inflammation. The beneficial effects of TP and PC treatment were found to prevent memory loss and significantly improve synaptic structure and functional plasticity. TP+PC combination shows more obvious advantages than intervention alone. TP and PC treatment improved behavioral performance, the hippocampal LTP damage and the shape and number of dendrites, dendritic spines and synapses, reduced the burden of Aβ and decreased the inflammation in hippocampus. In addition, TP and PC treatment decreased the expressions of Iba-1, TNF-α, TNFR1, and TRAF2. CONCLUSIONS These results provided a novel evidence TP combined with PC inhibits p38 MAPK pathway, suppresses the inflammation in hippocampus, and increase the externalization of AMPAR, which may be one of the mechanisms to improve synaptic plasticity and memory in the menopause-related memory decline rats.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, People's Republic of China
| | - Ruirui Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
8
|
Petry FDS, Hoppe JB, Klein CP, Dos Santos BG, Hözer RM, Bifi F, Matté C, Salbego CG, Trindade VMT. Genistein attenuates amyloid-beta-induced cognitive impairment in rats by modulation of hippocampal synaptotoxicity and hyperphosphorylation of Tau. J Nutr Biochem 2020; 87:108525. [PMID: 33065257 DOI: 10.1016/j.jnutbio.2020.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular accumulation of amyloid-beta (Aβ) peptide, which induces synaptic dysfunction, alteration of intracellular signaling pathways, hyperphosphorylation of the Tau protein, and cognitive impairment. Genistein, one of the major isoflavones present in soy and soy products, has been shown to modulate some of the pathogenic events associated with the neurodegeneration process. However, its underlying mechanisms remain to be clarified. Therefore, the objectives of the present study were to evaluate the ability of genistein to protect against Aβ1-42-induced cognitive impairment in rats and to elucidate some of the possible mechanisms involved in its neuroprotective effects in the hippocampus. Male Wistar rats received bilateral intracerebroventricular infusions of Aβ1-42 (2 nmol) and genistein 10 mg/kg orally for 10 days. The Aβ-infused animals showed significant impairment of memory, which was accompanied by the following neurochemical alterations in the hippocampus: decreased levels of the synaptic proteins synaptophysin and postsynaptic density protein 95 (PSD-95), hyperphosphorylation of Tau with increased activation of glycogen synthase kinase-3β and c-Jun N-terminal kinase, and inactivation of ERK. Treatment with genistein improved Aβ-induced cognitive impairment by attenuation of synaptotoxicity, hyperphosphorylation of Tau, and inactivation of ERK. Furthermore, treatment with this soy isoflavone did not cause systemic toxicity. These findings provide further evidence of the neuroprotective effect of genistein in an in vivo model of Aβ toxicity and, importantly, extend the current knowledge concerning the mechanisms associated with the neuroprotective effects of this compound in the hippocampus.
Collapse
Affiliation(s)
- Fernanda Dos Santos Petry
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Juliana Bender Hoppe
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Peres Klein
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bernardo Gindri Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Régis Mateus Hözer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Felippo Bifi
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Genistein and Galantamine Combinations Decrease β-Amyloid Peptide (1-42)-Induced Genotoxicity and Cell Death in SH-SY5Y Cell Line: an In Vitro and In Silico Approach for Mimic of Alzheimer's Disease. Neurotox Res 2020; 38:691-706. [PMID: 32613603 DOI: 10.1007/s12640-020-00243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is the primary dementia-causing disease worldwide, involving a multifactorial combination of environmental, genetic, and epigenetic factors, with essential participation of age and sex. Biochemically, AD is characterized by the presence of abnormal deposition of beta amyloid peptide (Aβ(1-42)), which in the brain is strongly correlated with oxidative stress, inflammation, DNA damage, and cholinergic impairment. The multiple mechanisms involved in its etiology create significant difficulty in producing an effective treatment. Neuroprotective properties of genistein and galantamine have been widely demonstrated through different mechanisms; however, it is unknown a possible synergistic neuroprotective effect against Aβ(1-42). In order to understand how genistein and galantamine combinations regulate the mechanisms of neuroprotection, we conducted a set of bioassays in vitro to evaluate cell viability, clonogenic survival, cell death, and anti-genotoxicity. Through molecular docking and therapeutic viability assays, we analyzed the inhibitory activity exerted by genistein on three major protein targets (AChE, BChE, and NMDA) involved in AD. The results showed that genistein and galantamine afforded significant protection at higher concentrations; however, combinations of sub-effective concentrations of both compounds provided marked neuroprotection when they were combined. In silico approaches showed that genistein has higher scores than the positive controls and low toxicity levels; nevertheless, the therapeutic viability indicated that unlike galantamine, genistein cannot undergo the action by P glycoprotein (PGP) and probably may be unable to cross the blood-brain barrier. In conclusion, our results show that genistein and galantamine exert neuroprotective by decreasing genotoxicity and cell death. In silico analysis, suggest that genistein modulates positively the expression of AChE, BChE, and NMDA. In this context, a combination of two or more drugs could inspire an attractive therapeutic strategy.
Collapse
|
10
|
Westlund KN, Lu Y, Zhang L, Pappas TC, Zhang WR, Taglialatela G, McIlwrath SL, McNearney TA. Tyrosine Kinase Inhibitors Reduce NMDA NR1 Subunit Expression, Nuclear Translocation, and Behavioral Pain Measures in Experimental Arthritis. Front Physiol 2020; 11:440. [PMID: 32536874 PMCID: PMC7267073 DOI: 10.3389/fphys.2020.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
In the lumbar spinal cord dorsal horn, release of afferent nerve glutamate activates the neurons that relay information about injury pain. Here, we examined the effects of protein tyrosine kinase (PTK) inhibition on NMDA receptor NR1 subunit protein expression and subcellular localization in an acute experimental arthritis model. PTK inhibitors genistein and lavendustin A reduced cellular histological translocation of NMDA NR1 in the spinal cord occurring after the inflammatory insult and the nociceptive behavioral responses to heat. The PTK inhibitors were administered into lumbar spinal cord by microdialysis, and secondary heat hyperalgesia was determined using the Hargreaves test. NMDA NR1 cellular protein expression and nuclear translocation were determined by immunocytochemical localization with light and electron microscopy, as well as with Western blot analysis utilizing both C- and N-terminal antibodies. Genistein and lavendustin A (but not inactive lavendustin B or diadzein) effectively reduced (i) pain related behavior, (ii) NMDA NR1 subunit expression increases in spinal cord, and (iii) the shift of NR1 from a cell membrane to a nuclear localization. Genistein pre-treatment reduced these events that occur in vivo within 4 h after inflammatory insult to the knee joint with kaolin and carrageenan (k/c). Cycloheximide reduced glutamate activated upregulation of NR1 content confirming synthesis of new protein in response to the inflammatory insult. In addition to this in vivo data, genistein or staurosporin inhibited upregulation of NMDA NR1 protein and nuclear translocation in vitro after treatment of human neuroblastoma clonal cell cultures (SH-SY5Y) with glutamate or NMDA (4 h). These studies provide evidence that inflammatory activation of peripheral nerves initiates increase in NMDA NR1 in the spinal cord coincident with development of pain related behaviors through glutamate non-receptor, PTK dependent cascades.
Collapse
Affiliation(s)
- Karin N Westlund
- Research Division, New Mexico VA Health Care System, Albuquerque, NM, United States.,Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ying Lu
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Liping Zhang
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Todd C Pappas
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Wen-Ru Zhang
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Giulio Taglialatela
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sabrina L McIlwrath
- Research Division, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Terry A McNearney
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
11
|
Petry FDS, Coelho BP, Gaelzer MM, Kreutz F, Guma FTCR, Salbego CG, Trindade VMT. Genistein protects against amyloid-beta-induced toxicity in SH-SY5Y cells by regulation of Akt and Tau phosphorylation. Phytother Res 2019; 34:796-807. [PMID: 31795012 DOI: 10.1002/ptr.6560] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular deposition of amyloid-β (Aβ) peptide and hyperphosphorylation of Tau protein, which ultimately leads to the formation of intracellular neurofibrillary tangles and cell death. Increasing evidence indicates that genistein, a soy isoflavone, has neuroprotective effects against Aβ-induced toxicity. However, the molecular mechanisms involved in its neuroprotection are not well understood. In this study, we have established a neuronal damage model using retinoic-acid differentiated SH-SY5Y cells treated with different concentrations of Aβ25-35 to investigate the effect of genistein against Aβ-induced cell death and the possible involvement of protein kinase B (PKB, also termed Akt), glycogen synthase kinase 3β (GSK-3β), and Tau as an underlying mechanism to this neuroprotection. Differentiated SH-SY5Y cells were pre-treated for 24 hr with genistein (1 and 10 nM) and exposed to Aβ25-35 (25 μM), and we found that genistein partially inhibited Aβ induced cell death, primarily apoptosis. Furthermore, the protective effect of genistein was associated with the inhibition of Aβ-induced Akt inactivation and Tau hyperphosphorylation. These findings reinforce the neuroprotective effects of genistein against Aβ toxicity and provide evidence that its mechanism may involve regulation of Akt and Tau proteins.
Collapse
Affiliation(s)
- Fernanda Dos Santos Petry
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bárbara Paranhos Coelho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Maier Gaelzer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Kreutz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|