1
|
Zheng Y, Tan H, Chai J, Han L, Zhai C, Lee J, Li X, Zhao Y. Ginseng fruit rare saponins (GFRS) improved inflammatory response: In vitro and in vivo assessment. Fitoterapia 2024; 179:106244. [PMID: 39396651 DOI: 10.1016/j.fitote.2024.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Inflammation is the body's protective immune response to tissue damage. Ginseng has a long history of medicinal use, and its active ingredient ginsenosides have anti-inflammatory effects. Ginseng fruit rare saponins (GFRS) is a transformation product of ginseng saponins and rich in a variety of rare saponins. We used HPLC-DAD method to study GFRS rare saponins with ginsenoside F4, R-Rg3, SRg3, Rk1, Rg6, Rg5, Rk3 and Rh4. However, there is no study on the use of GFRS to reduce skin inflammation. This study enriched the action pathway of GFRS through network pharmacology and revealed the anti-inflammatory effect of GFRS for the first time. In vitro experiments showed that GFRS could significantly reduce the release of NO in lipopolysaccharide (LPS) -induced RAW264.7 cells and HaCaT cells, and reduce the secretion and expression of inflammation-related factors Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α) and Interleukin-17 A (IL-17 A), thereby reducing cell inflammatory damage. In the imiquimod (IMQ) -induced mouse inflammatory model, the therapeutic effect of GFRS on the pathogenesis of psoriasis-like dermatitis was studied. In vivo experiments showed that the skin erythema, scales, thickness and inflammatory infiltration of GFRS-treated mice were reduced, and the psoriasis area severity index score was significantly lower than that of IMQ group. GFRS restored IMQ-induced spleen size and reduced the secretion and expression of TNF-α, IL-6, Interferon-γ (IFN-γ) and IL-17 A in serum. In summary, our results demonstrate that GFRS alleviates IMQ-induced dermatitis symptoms, effectively reduces the secretion of inflammatory factors, and inhibits IL-17 A expression.
Collapse
Affiliation(s)
- Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hongyan Tan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jiayi Chai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Linlin Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Changzhen Zhai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiaomin Li
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
2
|
Carthamus tinctorius Suppresses LPS-Induced Anti-Inflammatory Responses by Inhibiting the MAPKs/NF-κB Signaling Pathway in HaCaT Cells. Sci Pharm 2023. [DOI: 10.3390/scipharm91010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This study aimed to elucidate the anti-inflammatory activity of C. tinctorius leaves by measuring inflammatory parameters such as nitric oxide (NO) production and mRNA expression of iNOS, interleukin-6 (IL-6), and IL-1β in lipopolysaccharide (LPS)-induced HaCaT cells. Further, the effect of C. tinctorius ethanol extract on the MAPKs/NF-κB signaling pathway was examined in HaCaT cells. The phytochemical profile of the ethanol extract of C. tinctorius leaves was determined using UPLC-QTOF-MS/MS. The results indicated that the ethanol extract of C. tinctorius effectively attenuated LPS-induced secretion of NO, IL-6, and IL-1β in HaCaT cells. Further, LPS-stimulated mRNA and protein expressions of iNOS were decreased by pre-treatment with C. tinctorius ethanol extract at the transcriptional level in HaCaT cells. Moreover, the ethanol extract of C. tinctorius suppressed NF-κB signaling in LPS-induced HaCaT cells. This suppression was mediated by MAPKs/NF-κB signaling, inhibiting the phosphorylation of p38 and p65 in HaCaT cells. However, there is no significant effect on the phosphorylation of JNK by the ethanol extract. The QTOF-MS/MS analysis revealed the identification of 27 components in the ethanol extract of C. tinctorius leaves. The data demonstrate that the ethanol extract of C. tinctorius leaves protects the LPS-induced HaCaT cells by inhibiting the expression of iNOS, IL-6, and IL-1β and suppressing the phosphorylation of the p38, p65, p-JNK via inactivation of MAPKs/NF-κB signaling pathway. These results demonstrate that C. tinctorius leaves may serve as a potential candidate to prevent inflammation-related diseases.
Collapse
|
3
|
Carreras-Badosa G, Maslovskaja J, Vaher H, Pajusaar L, Annilo T, Lättekivi F, Hübenthal M, Rodriguez E, Weidinger S, Kingo K, Rebane A. miRNA expression profiles of the perilesional skin of atopic dermatitis and psoriasis patients are highly similar. Sci Rep 2022; 12:22645. [PMID: 36587063 PMCID: PMC9805436 DOI: 10.1038/s41598-022-27235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis vulgaris (PV) are chronic inflammatory skin diseases with heterogeneous molecular backgrounds. MicroRNAs (miRNAs) contribute to either development or regulation of many immune system related diseases. Only few miRNA profiling studies are available for AD and no comparisons between AD and PV skin miRNA profiles have been performed recently. We conducted a miRNA profiling analysis of skin, as well as serum, from adult AD and PV patients and control individuals. 130 miRNAs were differentially expressed in AD skin, of which 77 were common differentially expressed in AD and PV. No differentially expressed miRNAs were detected in serum. Pathway analyses revealed differentially expressed miRNAs to potentially target immune-system related pathways, including TNF-α, IL-2/STAT4 and IL-6/JAK/STAT3. Additional genetic analysis of published AD GWAS dataset detected association of several target genes of differentially expressed miRNAs in skin. Moreover, miR-28-5p, miR-31-5p, miR-378a-3p and miR-203a were validated as upregulated in the skin of AD and PV patients. All validated miRNAs were reliable predictive markers for AD or PV. In conclusion, miRNA expression pattern in the skin of adult AD patients is highly similar to that of PV with multiple differentially expressed miRNAs potentially involved in the regulation of immune responses in AD and PV.
Collapse
Affiliation(s)
- Gemma Carreras-Badosa
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
- Endocrinology, Girona Biomedical Research Institute, Girona, Spain
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Laura Pajusaar
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Tarmo Annilo
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Freddy Lättekivi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia
| | - Matthias Hübenthal
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, 50411, Tartu, Estonia.
| |
Collapse
|
4
|
Retraction statement: Tanshinol relieves lipopolysaccharide-induced inflammatory injury of HaCaT cells via down-regulation of micro RNA-122. Phytother Res 2020; 34:2419. [PMID: 32959946 DOI: 10.1002/ptr.6837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
miR-122 Exerts Inhibitory Effects on Osteoblast Proliferation/Differentiation in Osteoporosis by Activating the PCP4-Mediated JNK Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:345-358. [PMID: 32199130 PMCID: PMC7082497 DOI: 10.1016/j.omtn.2019.11.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
Osteoporosis is characterized by the reduction of bone mineral density and deterioration of bone quality which leads to high risk of fractures. Some microRNAs (miRNAs) have been confirmed as potential modulators of osteoblast differentiation to maintain bone mass maintenance. We aimed to clarify whether miR-122 could regulate osteoblast differentiation in ovariectomized rats with osteoporosis. miR-122 was upregulated and Purkinje cell protein 4 (PCP4) was downregulated in ovariectomized rats. PCP4 was identified as a target of miR-122 by dual-luciferase reporter gene assay. We transfected isolated osteoblasts from ovariectomized rats with miR-122 mimic or inhibitor or PCP4 overexpression vectors. Proliferation and differentiation of osteoblasts were repressed by the overexpression of miR-122 but enhanced by overexpression of PCP4. miR-122 could induce the activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway, while PCP4 blocked this pathway. Rescue experiments further demonstrated that the inhibiting effects of miR-122 on osteoblast differentiation could be compensated by activation of the PCP4 or inhibition of JNK signaling pathway. Collectively, our data imply that miR-122 inhibits osteoblast proliferation and differentiation in rats with osteoporosis, highlighting a novel therapeutic target for osteoporotic patients.
Collapse
|
6
|
Wang Q, Tao S, Zhu N, Li T, Yu L. Silencing circular RNA circANKRD36 remits lipopolysaccharide-induced inflammatory damage by regulating microRNA-15/MyD88. J Cell Biochem 2019; 121:2704-2712. [PMID: 31692058 DOI: 10.1002/jcb.29490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Bedsore is a familiar disease, which fearfully harms the health of the patients. We investigated the efficacy and mechanism of circular RNA circANKRD36 on HaCaT cell in inflammatory damage. CCK-8 and flow cytometry were respectively used to investigate the efficacies of lipopolysaccharide (LPS), circANKRD36, and microRNA (miR)-15 on cell viability and apoptosis. Moreover, circANKRD36 and miR-15 expression were changed by cell transfection and investigated by reverse transcription-quantitative polymerase chain reaction. Furthermore, the levels of Bax, pro caspase-3, cleaved caspase-3, interleukin (IL)-1β, IL-6, and proteins of the pathway were investigated by Western blot. Otherwise, the levels of IL-1β and IL-6 were investigated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) was investigated by ROS assay. The relation between myeloid differentiation factor 88 (MyD88) and miR-15 was investigated by luciferase assay. LPS caused inflammatory damage and upregulated circANKRD36. circANKRD36 was silenced in cells and si-circANKRD36 remitted inflammatory damage. Furthermore, si-circANKRD36 negatively regulated miR-15 and miR-15 inhibitor could reverse the efficacies of si-circANKRD36. Besides, si-circANKRD36 restrained the NF-κB pathway by upregulating miR-15. Finally, MyD88 was authenticated as a target of miR-15. circANKRD36 remitted cell inflammatory damage upregulating miR-15/MyD88 via the NF-κB pathway in HaCaT cells.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Shujun Tao
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Nan Zhu
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Tingting Li
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Lingling Yu
- Department of Hepatopathy X, Qingdao No. 6 People's Hospital, Qingdao, China
| |
Collapse
|