1
|
Lao Y, Guo J, Fang J, Geng R, Li M, Qin Y, Wu J, Kang SG, Huang K, Tong T. Beyond flavor: the versatile roles of eugenol in health and disease. Food Funct 2024; 15:10567-10581. [PMID: 39373768 DOI: 10.1039/d4fo02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Eugenol, a phenylpropanoid compound, is found in various dietary resources and medicinal plants. From a historical perspective, eugenol is widely employed as a flavoring agent in the food and fragrance industries. Here, this review mainly focuses on recent advances in eugenol with respect to its versatile physiological roles in health and disease and discusses the mechanisms. Emerging evidence has highlighted that eugenol exhibits multiple biological activities in cancer, diabetes, obesity, cardiovascular diseases, and neurodegenerative diseases. It also has analgesic, anti-inflammatory, and antioxidant qualities and has lethal or inhibiting effects on various viruses, bacteria, fungi, and parasites. The manuscript also contains some patents that have been filed thus far regarding the production and application of eugenol. Overall, these benefits make eugenol a promising nutritional supplement which fulfils its historical function as a flavoring agent, opening up new possibilities for the creation of therapeutic agents for the treatment of disease.
Collapse
Affiliation(s)
- Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Yige Qin
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jiayi Wu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
2
|
Zhang J, Lin Z, Zhang Y, Gu H, Li W. Bioinformatics-based drug repositioning and prediction of the main active ingredients and potential mechanisms of action for the efficacy of Dan-Lou tablet. Sci Rep 2024; 14:23297. [PMID: 39375410 PMCID: PMC11458610 DOI: 10.1038/s41598-024-74243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Drug repositioning is gaining attention as a method for developing new drugs due to its low cost, short cycle time, and high success rate. One important approach is to explore new uses for already marketed drugs. In this study, we utilized the strategy of drug repositioning, focusing on the Dan-Lou tablet. We predicted the efficacy of Dan-Lou tablet against non-small cell lung cancer based on gene expression similarity and verified it by in vitro experiments. Next, we performed further analysis and validation using network pharmacology, molecular docking and molecular dynamics. Based on the results, it was concluded that Dan-Lou tablet mainly acted through nine compounds, Quercetin, Luteolin, Scoparone, Isorhamnetin, Eugenol, Genistein, Coumestrol, Hederagenin, Succinic Acid, and mainly targeted CCL2, FEN1, TPI1, RMI2 by six pathways. This discovery not only provides a new idea for the development of Dan-Lou tablet but also provides useful predictive information for clinical treatment. The method we adopted has great development prospects as a way to predict the efficacy of new drugs and their main mechanisms of action, and it has a positive impact on the research and development of new drugs using drug repositioning and the modernization of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jingyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhaozhou Lin
- Beijing Zhongyan Tongrentang Medicine R&D Co., Ltd, Beijing, 100079, China.
| | - Yinghua Zhang
- People's Hospital of Gansu province, Lanzhou, 730000, Gansu, China.
| | - Hao Gu
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100079, China.
| | - Wen Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Zamli KM, Hashim F, Razali SA, Yusoff HM, Mohamad H, Abdullah F, Asari A. Synthesis, anti-amoebic activity and molecular docking simulation of eugenol derivatives against Acanthamoeba sp. Saudi Pharm J 2023; 31:101703. [PMID: 37546528 PMCID: PMC10400915 DOI: 10.1016/j.jsps.2023.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Amoebae of the genus Acanthamoeba can cause diseases such as amoebic keratitis and granulomatous amoebic encephalitis. Until now, treatment options for these diseases have not been fully effective and have several drawbacks. Therefore, research into new drugs is needed for more effective treatment of Acanthamoeba infections. Eugenol, a phenolic aromatic compound mainly derived from cloves, has a variety of pharmaceutical properties. In this study, nine eugenol derivatives (K1-K9), consisting of five new and four known compounds, were synthesized and screened for their antiamoebic properties against Acanthamoeba sp. The structure of these compounds was characterized spectroscopically by Fourier transform infrared (FTIR), Ultraviolet-Visible (UV-Vis), 1H and 13C Nuclear Magnetic Resonance (NMR) and mass spectrometer (MS). The derived molecules were screened for antiamoebic activity by determining IC50 values based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and observation of amoeba morphological changes by light and fluorescence microscopy. Most of the tested compounds possessed strong to moderate cytotoxic effects against trophozoite cells with IC50 values ranging from 0.61 to 24.83 μg/mL. Observation of amoebae morphology by light microscopy showed that the compounds caused the transformed cells to be roundish and reduced in size. Furthermore, fluorescence microscopy observation using acridine orange (AO) and propidium iodide (PI) (AO/PI) staining showed that the cells have damaged membranes by displaying a green cytoplasm with orange-stained lysosomes. Acidification of the lysosomal structure indicated disruption of the internal structure of Acanthamoeba cells when treated with eugenol derivatives. The observed biological results were also confirmed by interaction simulations based on molecular docking between eugenol derivatives and Acanthamoeba profilin. These interactions could affect the actin-binding ability of the protein, disrupting the shape and mobility of Acanthamoeba. The overall results of this study demonstrate that eugenol derivatives can be considered as potential drugs against infections caused by Acanthamoeba.
Collapse
Affiliation(s)
- Khairunisa Mohd Zamli
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fatimah Hashim
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Siti Aisyah Razali
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hanis Mohd Yusoff
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Habsah Mohamad
- Institute of Biotechnology Marine, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fauziah Abdullah
- Phytochemistry Programme, Natural Products Division, Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Malaysia
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Advanced Nano Materials (ANoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
5
|
Zeng X, Tang X, Chen X, Wen H. RNF182 induces p65 ubiquitination to affect PDL1 transcription and suppress immune evasion in lung adenocarcinoma. Immun Inflamm Dis 2023; 11:e864. [PMID: 37249301 PMCID: PMC10201958 DOI: 10.1002/iid3.864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The RING finger (RNF) proteins are a large group of ubiquitin ligases whose aberrant expression is often associated with disease progression. This study examines the function of RNF protein 182 (RNF182) in lung adenocarcinoma (LUAD) cells and its impact on p65 and programmed death ligand 1 (PDL1) regulation. METHODS Expression of RNF182, p65, and PDL1 in LUAD tissues and cells was measured using immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and/or western blot (WB) assays. LUAD cells were induced to overexpress RNF182 and p65, followed by cell counting kit-8, colony formation, Transwell, and flow cytometry assays to evaluate the cells' malignant phenotype. Coimmunoprecipitation and WB assays were used to verify RNF182's effect on p65 ubiquitination. Chromatin immunoprecipitation-qPCR and luciferase assays were used to analyze p65's transcriptional regulation of PDL1. Coculture of LUAD with CD8+ cytotoxic T cells was performed to detect lactate dehydrogenase release and interferon-γ and interleukin-2 concentrations. LUAD cells were implanted in mice to analyze tumorigenicity. RESULTS RNF182 was poorly expressed, while p65 and PDL1 were highly expressed in LUAD tissues and cells. RNF182 overexpression suppressed the malignant properties of LUAD cells, and it promoted p65 ubiquitination and protein degradation. p65 activated PDL1 transcription. Overexpression of RNF182 suppressed the PDL1 expression, increased the cytotoxicity in LUAD cells cocultured with CD8+ T cells, and suppressed the tumorigenesis of cancer cells in vivo. However, these tumor-suppressive effects of RNF182 on LUAD cells were blocked by p65 restoration. CONCLUSION This research demonstrates that RNF182 induces p65 ubiquitination to suppress PDL1 transcription and immunosuppression in LUAD.
Collapse
Affiliation(s)
- Xingdu Zeng
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| | - Xiaoyuan Tang
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| | - Xingxiang Chen
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| | - Huilan Wen
- Department of Respiratory MedicineThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiPeople's Republic of China
| |
Collapse
|
6
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
7
|
Shi X, Zhang W, Bao X, Liu X, Yang M, Yin C. Eugenol modulates the NOD1-NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells. Front Endocrinol (Lausanne) 2023; 14:1136067. [PMID: 36923216 PMCID: PMC10009163 DOI: 10.3389/fendo.2023.1136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The most aggressive subtype of breast cancer, triple-negative breast cancer (TNBC), has a worse prognosis and a higher probability of relapse since there is a narrow range of treatment options. Identifying and testing potential therapeutic targets for the treatment of TNBC is of high priority. METHODS Using a transcriptional signature of triple-negative breast cancer collected from Gene Expression Omnibus (GEO), CMap was utilized to reposition compounds for the treatment of TNBC. CCK8 and colony formation experiments were performed to detect the effect of the candidate drug on the proliferation of TNBC cells. Meanwhile, transwell and wound healing assay were implemented to detect cell metastasis change caused by the candidate drug. Moreover, the proteomic approach was presently ongoing to evaluate the underlying mechanism of the candidate drug in TNBC. Furthermore, drug affinity responsive target stability (DARTS) coupled with LC-MS/MS was carried out to explore the potential drug target candidate in TNBC cells. RESULTS We found that the most widely used medication, eugenol, reduced the growth and metastasis of TNBC cells. According to the underlying mechanism revealed by proteomics, eugenol could inhibit TNBC cell proliferation and metastasis via the NOD1-NF-κB signaling pathway. DARTS experiment further revealed that eugenol may bind to NF-κB in TNBC cells. CONCLUDES Our findings pointed out that eugenol was a potential candidate drug for the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Pharmacy, Yantai University, Yantai, China
| | - Weiwei Zhang
- Department of Pharmacy, Yantai University, Yantai, China
| | - Xiao Bao
- Pharmacy Department, Wenzhou Nursing School, Wenzhou, China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Yang
- Obstetrics Department, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chengliang Yin
- Macau University of Science and Technology, Faculty of Medicine, Macau, Macau SAR, China
- *Correspondence: Chengliang Yin,
| |
Collapse
|
8
|
Padhy I, Paul P, Sharma T, Banerjee S, Mondal A. Molecular Mechanisms of Action of Eugenol in Cancer: Recent Trends and Advancement. Life (Basel) 2022; 12:1795. [PMID: 36362950 PMCID: PMC9699592 DOI: 10.3390/life12111795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cancer is, at present, among the leading causes of morbidity globally. Despite advances in treatment regimens for cancer, patients suffer from poor prognoses. In this context, the availability of vast natural resources seems to alleviate the shortcomings of cancer chemotherapy. The last decade has seen a breakthrough in the investigations related to the anticancer potential of dietary phytoconstituents. Interestingly, a handsome number of bioactive principles, ranging from phenolic acids, phenylpropanoids, flavonoids, stilbenes, and terpenoids to organosulphur compounds have been screened for their anticancer properties. Among the phenylpropanoids currently under clinical studies for anticancer activity, eugenol is a promising candidate. Eugenol is effective against cancers like breast, cervical, lung, prostate, melanomas, leukemias, osteosarcomas, gliomas, etc., as evident from preclinical investigations. OBJECTIVE The review aims to focus on cellular and molecular mechanisms of eugenol for cancer prevention and therapy. METHODS Based on predetermined criteria, various scholarly repositories, including PubMed, Scopus, and Science Direct were analyzed for anticancer activities of eugenol. RESULTS Different biochemical investigations reveal eugenol inducing cytotoxicity, inhibiting phases of the cell cycles, programmed cell death, and auto-phagocytosis in studied cancer lines; thus, portraying eugenol as a promising anticancer molecule. A survey of current literature has unveiled the molecular mechanisms intervened by eugenol in exercising its anticancer role. CONCLUSION Based on the critical analysis of the literature, eugenol exhibits vivid signaling pathways to combat cancers of different origins. The reports also depict the advancement of novel nano-drug delivery approaches upgrading the therapeutic profile of eugenol. Therefore, eugenol nanoformulations may have enormous potential for both the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha ‘O’Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, West Bengal, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha ‘O’Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713301, West Bengal, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M. R. College of Pharmaceutical Sciences and Research, Balisha 743234, West Bengal, India
| |
Collapse
|
9
|
Pulegone and Eugenol Oral Supplementation in Laboratory Animals: Results from Acute and Chronic Studies. Biomedicines 2022; 10:biomedicines10102595. [PMID: 36289857 PMCID: PMC9599722 DOI: 10.3390/biomedicines10102595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals’ body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination.
Collapse
|
10
|
Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022; 13:999380. [PMID: 36249749 PMCID: PMC9561884 DOI: 10.3389/fphar.2022.999380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif (TRIM) containing proteins are a class of E3 ubiquitin ligases, which are critically implicated in the occurrence and development of tumors. They can function through regulating various aspects of tumors, such as tumor proliferation, metastasis, apoptosis and the development of drug resistance during tumor therapy. Some members of TRIM family proteins can mediate protein ubiquitination and chromosome translocation via modulating several signaling pathways, like p53, NF-κB, AKT, MAPK, Wnt/β-catenin and other molecular regulatory mechanisms. The multi-domain nature/multi-functional biological role of TRIMs implies that blocking just one function or one domain might not be sufficient to obtain the desired therapeutic outcome, therefore, a detailed and systematic understanding of the biological functions of the individual domains of TRIMs is required. This review mainly described their roles and underlying mechanisms in tumorigenesis and progression, and it might shade light on a potential targeting strategy for TRIMs in tumor treatment, especially using PROTACs.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
- *Correspondence: Lufeng Zheng, ; Qianqian Guo,
| |
Collapse
|
11
|
Global regulatory factor VeA upregulates the production of antitumor substances in endophytic Fusarium solani. Antonie Van Leeuwenhoek 2022; 115:1085-1100. [PMID: 35789442 DOI: 10.1007/s10482-022-01753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 10/17/2022]
Abstract
A number of studies have demonstrated that endophytic fungi have the potential to produce antitumor active substances with novel structures and significant activities. In our previous studies, we isolated a Fusarium strain from the stem of the medicinal plant Nothapodytes pittosporoides (Oliv.). In this study, we identified this strain as Fusarium solani and found that its crude extract has significant antitumor activity against human alveolar adenocarcinoma cells (A549). We overexpressed the global regulatory factor VeA in F. solani (VeAOE), resulting in a significant increase in antitumor activity. The MTT assay results showed that the inhibition rate of the VeAOE mutant extract on A549 cancer cells was significantly higher than that of the WT extract, as the IC50 decreased from 369.22 to 285.89 μg/mL, and the apoptosis ratio was significantly increased by approximately 4.86-fold. In VeAOE, accumulation of alkaloids, terpenoids, carboxylic acid derivatives, phenols and flavonoid metabolites with potential antitumor activity was significantly increased compared with WT based on metabolomic analysis. Additionally, transcriptome analysis found that the expression patterns of 48 genes related to antitumor activity were significantly changed in VeAOE, mainly involving glycosyl hydrolases, the Zn(2)-Cys(6) class, cytochrome P450 monooxygenase, 3-isopropylmalate dehydratase, and polyketide synthases. These results suggested that VeA mediated the antitumor activity of the metabolites in F. solani HB1-J1 by regulating multiple metabolic pathways.
Collapse
|
12
|
Duan Y, Huang X, Qiao B, Ma R, Li J. Eugenol inhibits the biological activities of an oral squamous cell carcinoma cell line SCC9 via targeting MIF. Anticancer Agents Med Chem 2022; 22:2799-2806. [PMID: 35331101 DOI: 10.2174/1871520622666220324105435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a rampant cancer type in head and neck cancers with a poor prognosis and a high recurrence rate. Eugenol shows anticancer effect in a variety of cancers, but it has been rarely studied in oral squamous cell carcinoma (OSCC). OBJECTIVE Therefore, the purpose of this study was to explore the role of Eugenol in OSCC and the underlying mechanism. METHODS After different concentrations of Eugenol (0, 200, 400 and 800 μM) treatment, the viability, proliferation, migration and invasion of OSCC cell line SCC9 was measured by CCK-8, colony formation, wound-healing and transwell assays, respectively. TUNEL staining was employed to detect the apoptosis. Western blotting was used to evaluate gene expression at protein level. Molecular docking was used to identify the target of Eugenol. RESULTS Eugenol decreased the proliferation, reduced the abilities of invasion and migration along with the expression of matrix metalloproteinases (MMP) 2 and MMP9 in SCC9 cells. On the contrary, the ratio of apoptotic cells was increased by Eugenol. In addition, Eugenol down-regulated B cell lymphoma-2 (Bcl-2) expression, but up-regulated BCL-2 associated X (Bax), cleaved caspase 3 and cleaved poly-ADP ribose polymerase (PARP) expression. Meanwhile, Eugenol exerted its effect on SCC9 cells in a concentration-dependent manner. Eugenol could bind to macrophage migration inhibitory factor (MIF), the expression of which was down-regulated after Eugenol treatment. Besides, overexpression of MIF reversed all the effects of Eugenol on OSCC cells. CONCLUSION In summary, Eugenol suppressed the malignant processes of OSCC cells by targeting MIF, which could guide the clinical application of Eugenol in OSCC.
Collapse
Affiliation(s)
- Yao Duan
- Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, China
| | - Xiaojin Huang
- Department of Traditional Chinese Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bo Qiao
- Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100101, China
| | - Rui Ma
- Department of Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, China
| | - Jialin Li
- Department of Traditional Chinese Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
13
|
The protective effect and potential mechanisms of eugenol against Salmonella in vivo and in vitro. Poult Sci 2022; 101:101801. [PMID: 35338975 PMCID: PMC8957058 DOI: 10.1016/j.psj.2022.101801] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) continues to be a serious concern to the poultry industry as a bacterial foodborne zoonosis, which generally results in intestinal inflammation and barrier dysfunction or even death. Eugenol is a phenolic compound with various pharmacological activities involved antioxidant, anti-inflammatory, and antibacterial effects, which is expected to be an effective nonantibiotic therapy. The purpose of this study was to explore the protective effects of eugenol in the cellular and broiler models of S. Typhimurium infection and the possible underlying mechanisms. The results of animal infection showed that eugenol treatments enhanced the relative weight gains and survival rates of broilers with a reduction of the organ bacterial load and intestinal ultrastructural injury. Moreover, eugenol significantly inhibited the mRNA levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor-4 (TLR4), then declined the phosphorylation of p65 and IκBα of NF-κB pathway and the expressions of inflammatory factors (TNF-α, IL-1β, IL-2, and IL-18) in duodenum tissues, while maintained the expressions of intestinal tight junction proteins (ZO-1, claudin-1, occludin). Further experiments in vitro revealed that eugenol markedly inhibited the adhesion and invasion of S. Typhimurium to RAW264.7 or IEC-6 cells, then reduce bacterial multiplication in IEC-6 or DF-1 cells. In conclusion, eugenol could defend broilers from S. Typhimurium infection by stabilizing the intestinal mucosal barrier and relieving inflammatory response, as well as inhibiting bacterial adhesion and invasion to cells.
Collapse
|
14
|
Morales-Cerrada R, Molina-Gutierrez S, Lacroix-Desmazes P, Caillol S. Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties. Biomacromolecules 2021; 22:3625-3648. [PMID: 34464094 DOI: 10.1021/acs.biomac.1c00837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biobased materials, derived from biomass building blocks, are essential in the pursuit of sustainable materials. Eugenol, a natural phenol obtained from clove oil, but also from lignin depolymerization, possesses a chemical structure that allows its easy modification to obtain a broad and versatile platform of biobased monomers. In this Perspective, an overview of the variety of reactions that have been executed on the allylic double bond, phenol hydroxyl group, aromatic ring, and methoxy group is given, focusing our attention on those to obtain monomers suitable for different polymerization reactions. Furthermore, possible applications and perspectives on the eugenol-derived materials are provided.
Collapse
Affiliation(s)
| | | | | | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34000, France
| |
Collapse
|
15
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
16
|
Luo Y, Zhao J, Zhang X, Wang C, Wang T, Jiang M, Zhu Q, Xie T, Chen D. Size controlled fabrication of enzyme encapsulated amorphous calcium phosphate nanoparticle and its intracellular biosensing application. Colloids Surf B Biointerfaces 2021; 201:111638. [PMID: 33639505 DOI: 10.1016/j.colsurfb.2021.111638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Inorganic-enzyme composites have been widely used for applications in catalysis and analytical science. Amorphous calcium phosphate, as a biocompatible material, can form open hydrated structure to encapsulate and protect enzymes. So far, there have been few progress on size-adjustable amorphous calcium phosphate nanoparticles since the diameter controllability is limited by its natural aggregation characteristics. By co-precipitation and nano-channel extrusion, we developed enzyme-loaded amorphous calcium phosphate nanoparticles with adjustable diameters. These enzyme-loaded particles showed high thermal and chemical stability as well as biocompatibility. The nano-sized enzyme-loaded particles can further expand their application fields and be used as intracellular enzyme probes. Delivering glucose oxidase enzyme by amorphous calcium phosphate nanoparticles enables fluorescent monitoring of glucose levels in living cells, which can be used to study the metabolism rates of cancer cells and normal cells. The nano-channel extrusion method can also be used as a template to encapsulate different kinds of enzymes to expand catalysis and biosensing applications.
Collapse
Affiliation(s)
- Ying Luo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, China; College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Jiaqian Zhao
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Xinran Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Chengcheng Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Tongyu Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Min Jiang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Qin Zhu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China
| | - Tian Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, China; College of Pharmacy, School of Medicine, Hangzhou Normal University, China.
| | - Dajing Chen
- College of Pharmacy, School of Medicine, Hangzhou Normal University, China.
| |
Collapse
|
17
|
Wang M, Dai W, Ke Z, Li Y. Functional roles of E3 ubiquitin ligases in gastric cancer. Oncol Lett 2020; 20:22. [PMID: 32774495 PMCID: PMC7405480 DOI: 10.3892/ol.2020.11883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
To date, >650 E3 ubiquitin ligases have been described in humans, including >600 really interesting new genes (RINGs), 28 homologous to E6-associated protein C-terminus (HECTs) and several RING-in-between-RINGs. They are considered key regulators and therapeutic targets of many types of human cancers, including gastric cancer (GC). Among them, some RING and HECT E3 ligases are closely related to the proliferation, infiltration and prognosis of GC. During the past few years, abnormal expressions and functions of many E3 ligases have been identified in GC. However, the functional roles of E3 ligases in GC have not been fully elucidated. The present article focuses on the functional roles of E3 ligases related to the proteasome in GC. In this comprehensive review, the latest research progress on E3 ligases involved in GC and elaborate their structure, classification, functional roles and therapeutic value in GC was summarized. Finally, 30 E3 ligases that serve essential roles in regulating the development of GC were described. Some of these ligases may serve as oncogenes or tumor suppressors in GC, whereas the pathological mechanism of others needs further study; for example, constitutive photomorphogenic 1. In conclusion, the present review demonstrated that E3 ligases are crucial tumor regulatory factors and potential therapeutic targets in GC. Therefore, more studies should focus on the therapeutic targeting of E3 ligases in GC.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangyan Ke
- Department of Geriatric Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
18
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
19
|
Tian Y, Guo Y, Zhu P, Zhang D, Liu S, Tang M, Wang Y, Jin Z, Li D, Yan D, Li G, Zhu X. TRIM59 loss in M2 macrophages promotes melanoma migration and invasion by upregulating MMP-9 and Madcam1. Aging (Albany NY) 2019; 11:8623-8641. [PMID: 31600735 PMCID: PMC6814609 DOI: 10.18632/aging.102351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
The culture supernatant from macrophages overexpressing TRIM59 has a cytotoxic effect on melanoma, but the mechanism remains unclear. To investigate whether deletion of TRIM59 in macrophages affects the metastatic potential of melanoma cells, we polarized control and TRIM59-deficient bone marrow-derived macrophages to the M2 phenotype and collected the respective conditioned media (CM). Exposure to CM from TRIM59-/--M2 cultures significantly promoted migration and invasion by B16-F0 and B16-F10 cells. Cytokine profiling indicated a ~15-fold increase in TNF-α production in CM from TRIM59-/--M2 cultures, and neutralizing TNF-α activity abrogated the referred stimulatory effects on cell motility. Transcriptome analysis revealed significant upregulation of MMP-9 and Madcam1 in melanoma cells exposed to TRIM59-/--M2 CM. Inhibitory experiments determined that these changes were also TNF-α-dependent and mediated by activation of ERK signaling. Independent knockdown of MMP9 and Madcam1 in B16-F10 cells impeded epithelial-mesenchymal transition and inhibited subcutaneous tumor growth and formation of metastatic lung nodules in vivo. These data suggest TRIM59 expression attenuates the tumor-promoting effect of tumor-associated macrophages, most of which resemble the M2 phenotype. Moreover, they highlight the relevance of TRIM59 in macrophages as a potential regulator of tumor metastasis and suggest TRIM59 could serve as a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China.,Department of Immunology, Jilin University, Changchun, China
| | - Yantong Guo
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, Jilin University, Changchun, China
| | - Dongxu Zhang
- Department of Immunology, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, Jilin University, Changchun, China
| | - Yuanxin Wang
- Department of Immunology, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|