1
|
Liu J, Li X, Wang H, Ren Y, Li Y, Guo F. Bavachinin selectively modulates PPAR γ and maintains bone homeostasis in Type 2 Diabetes. Phytother Res 2023; 37:4457-4472. [PMID: 37308719 DOI: 10.1002/ptr.7912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.
Collapse
Affiliation(s)
- Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
3
|
Mahajan N, Koul B, Kaur J, Bishnoi M, Gupta P, Kumar A, Shah BA, Mubeen I, Rai AK, Prasad R, Singh J. Antiobesity Potential of Bioactive Constituents from Dichloromethane Extract of Psoralea corylifolia L. Seeds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9504787. [PMID: 36060144 PMCID: PMC9436577 DOI: 10.1155/2022/9504787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022]
Abstract
Purpose Effectively controlling the accumulation of adipose tissue can be a therapeutic strategy for treating obesity, which is a global problem. The present study was designed for comparative assessment of in vitro antiobesity activities of the Psoralea corylifolia-dichloromethane seed extract (DCME) and the isolated phytochemicals, bakuchiol, isopsoralen, and psoralen, through antiadipogenesis and pancreatic lipase (PL) inhibition assays. Material and Methods. In vitro pancreatic lipase activity was determined spectrophotometrically by measuring the hydrolysis of p-nitrophenyl butyrate (p-NPB) to p-nitrophenol at 405 nm, and adipogenesis was assayed in 3 T3-L1 adipocytes (by using Oil Red O staining) using P. corylifolia-dichloromethane seed extract (DCME) and individual compounds, isolated from the extract. Result Antilipase as well as antiadipogenesis activity was displayed by both the DCME and the compounds. Maximum antilipase property was recorded in DCME (26.02 ± .041%) at 100 μg/ml, while, among the isolated compounds, bakuchiol exhibited a higher activity (24.2 ± 0.037%) at 100 μg/ml concentration, compared to other isolates. DCME was found to exhibit antiadipogenesis property, 75 ± 0.003% lipid accumulation, compared to the control at 100 μg/ml dose. Bakuchiol, isopsoralen, and psoralen inhibited the lipid accumulation in 3T3-L1 preadipocytes, 78.06 ± 0.002%, 80.91 ± 0.004%, and 80.91 ± 0.001%, respectively, lipid accumulation in comparison to control at 25 μM dose. Conclusion The present study highlights the antiobesity potential of P. corylifolia and its active constituents. Thus, it can be concluded that P. corylifolia has the potential to treat obesity and related diseases; however, further research on dose standardization and clinical trials are required.
Collapse
Affiliation(s)
- Neha Mahajan
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
- Department of Biotechnology, Govt. Degree College Kathua, Affiliated to University of Jammu, 184104, J&K (UT), India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Jasleen Kaur
- National Agri-Food Biotechnology Institute, Knowledge City-Sector 81, SAS, Nagar, Punjab 140603, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Knowledge City-Sector 81, SAS, Nagar, Punjab 140603, India
| | - Pankaj Gupta
- Department of Chemistry, Govt. Degree College Kathua, Affiliated to University of Jammu, 184104, J&K (UT), India
| | - Amit Kumar
- CSIR-Indian Institute of Integrative Medicine, Canal Road, J&K (UT), Jammu 180001, India
| | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine, Canal Road, J&K (UT), Jammu 180001, India
| | - Iqra Mubeen
- College of Plant Health and Medicine, Key Lab of Integrated Crop Disease and Pest Management, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411 Punjab, India
| |
Collapse
|
4
|
Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23147641. [PMID: 35886989 PMCID: PMC9325132 DOI: 10.3390/ijms23147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body’s metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.
Collapse
|
5
|
Liu J, Zhang W, Li Y, Li X, Li Y, Guo F. Flavonoids extract from the seeds of Psoralea corylifolia L. (PFE) alleviates atherosclerosis in high-fat diet-induced LDLR -/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153983. [PMID: 35152088 DOI: 10.1016/j.phymed.2022.153983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/12/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The seeds of Psoralea corylifolia L., a traditional medicine popular used in China and India, have been recommended in the treatment of leucoderma, psoriasis, osteoporosis, and gynecological bleeding. Our previous studies have found that flavonoid extract from the seeds of Psoralea corylifolia L. could activate fat browning and correct the disorder of glucose and lipid metabolism in obese mice. PURPOSE The present study aimed to investigate the anti-atherosclerosis of flavonoids extract from the seeds of Psoralea corylifolia L. METHODS Leukocyte adhesion assay, RT-PCR, Western blot analysis, and immunofluorescent assay were carried out in ox-LDL induced endothelium injury and foam cells formation in vitro. Flavonoids from the seeds of P. corylifolia L. (PFE) was administrated 150 and 300 mg/kg/day in HFD-induced LDLR-/- mice for 12 weeks. RESULTS Flavonoids from the seeds of P. corylifolia L. (PFE) could prevent leukocyte adhesion to the endothelium by inhibiting mRNA and protein expression of these adhesion molecules (VCAM-1, ICAM-1, and E-selectin). PFE could also prevent ox-LDL stimulated inflammation in HUVECs by inhibiting the NF-κB pathway. In addition, PFE significantly ameliorated ox-LDL induced macrophages-oriented foam cells formation through inducing cholesterol efflux via PPARγ-ABCA1/ABCG1. In HFD-induced LDLR-/- mice, PFE reversed the serum profile and circulated inflammation level. Meanwhile, PFE could remarkably alleviate atherosclerotic lesion sizes and intraplaque macrophage infiltration in aortic roots. CONCLUSION Flavonoids from the seeds of P. corylifolia L. could alleviate atherosclerosis by preventing endothelium injury, attenuating vascular inflammation, and alleviating the formation of foam cells.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Wen Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yahui Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
7
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
8
|
Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X, Lu Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 2019; 33:3140-3152. [PMID: 31452288 DOI: 10.1002/ptr.6486] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Multiphase pathological processes involve in Type 2 diabetes (T2DM)-induced nonalcoholic fatty liver disease (NAFLD). However, the therapies are quite limited. In the present study, the hepatoprotective effects and underlying mechanisms of quercetin in T2DM-induced NAFLD were investigated. T2DM-induced NAFLD and quercetin treatment models were established in vivo and in vitro. The results revealed that quercetin alleviated serum transaminase levels and markedly reduced T2DM-induced histological alterations of livers. Additionally, quercetin restored superoxide dismutase, catalase, and glutathione content in livers. Not only that, quercetin markedly attenuated T2DM-induced production of interleukin 1 beta, interleukin 6, and TNF-α. Accompanied by the restoration of the increased serum total bile acid (p = .0001) and the decreased liver total bile acid (p = .0005), quercetin could reduce lipid accumulation in the liver of db/db mice. Further mechanism studies showed that farnesoid X receptor 1/Takeda G-protein-coupled receptor 5 signaling pathways was involved in quercetin regulation of lipid metabolism in T2DM-induced NAFLD. In high D-glucose and free fatty acid cocultured HepG2 cells model, quercetin eliminated lipid droplets and restored the upregulated total cholesterol and triglyceride levels. Similar to the findings in mice, quercetin could also activate farnesoid X receptor 1/Takeda G-protein-coupled receptor 5 signaling pathway. These findings suggested that quercetin might be a potentially effective drug for the treatment of T2DM-induced NAFLD.
Collapse
Affiliation(s)
- Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shiyu Mao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|