1
|
Neagu M, Constantin C, Surcel M, Munteanu A, Scheau C, Savulescu‐Fiedler I, Caruntu C. Diabetic neuropathy: A NRF2 disease? J Diabetes 2024; 16:e13524. [PMID: 38158644 PMCID: PMC11418408 DOI: 10.1111/1753-0407.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
- Doctoral School, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Carolina Constantin
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
| | - Mihaela Surcel
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Adriana Munteanu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Cristian Scheau
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Ilinca Savulescu‐Fiedler
- Department of Internal Medicine – Coltea Clinical Hospital, ”Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Constantin Caruntu
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Dermatology“Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
| |
Collapse
|
2
|
Furci F, Cicero N, Allegra A, Gangemi S. Salvia rosmarinus: a possible role in unmet therapeutic needs in the prevention and care of immunological disorders. Nat Prod Res 2024:1-5. [PMID: 38587141 DOI: 10.1080/14786419.2024.2338815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, Vibo Valentia, Italy
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Li Pomi F, Papa V, Borgia F, Vaccaro M, Allegra A, Cicero N, Gangemi S. Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants (Basel) 2023; 12:antiox12030680. [PMID: 36978928 PMCID: PMC10045493 DOI: 10.3390/antiox12030680] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The rosemary plant, Rosmarinus officinalis L., one of the main members of the Lamiaceae family, is currently one of the most promising herbal medicines due to its pharmaceutical properties. This research aimed to evaluate the antioxidant role of Rosmarinus officinalis and its bioactive compounds on the skin, with a focus on the newly emerging molecular mechanisms involved, providing extensive scientific evidence of its anti-inflammatory, antimicrobial, wound-healing and anticancer activity in dermatological practice. The search was conducted on articles concerning in vitro and in vivo studies in both animals and humans. The results obtained confirm the antioxidant role of R. officinalis. This assumption derives the possibility of using R. officinalis or its bioactive elements for the treatment of inflammatory and infectious skin pathologies. However, although the use of rosemary in the treatment of skin diseases represents a fascinating line of research, future perspectives still require large and controlled clinical trials in order to definitively elucidate the real impact of this plant and its components in clinical practice.
Collapse
Affiliation(s)
- Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
4
|
Guimarães NSS, Ramos VS, Prado-Souza LFL, Lopes RM, Arini GS, Feitosa LGP, Silva RR, Nantes IL, Damasceno DC, Lopes NP, Rodrigues T. Rosemary (Rosmarinus officinalis L.) Glycolic Extract Protects Liver Mitochondria from Oxidative Damage and Prevents Acetaminophen-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:antiox12030628. [PMID: 36978874 PMCID: PMC10045355 DOI: 10.3390/antiox12030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rosmarinus officinalis L. (rosemary) is an aromatic culinary herb. Native to the Mediterranean region, it is currently cultivated worldwide. In addition to its use as a condiment in food preparation and in teas, rosemary has been widely employed in folk medicine and cosmetics. Several beneficial effects have been described for rosemary, including antimicrobial and antioxidant activities. Here, we investigated the mechanisms accounting for the antioxidant activity of the glycolic extract of R. officinalis (Ro) in isolated rat liver mitochondria (RLM) under oxidative stress conditions. We also investigated its protective effect against acetaminophen-induced hepatotoxicity in vivo. A crude extract was obtained by fractionated percolation, using propylene glycol as a solvent due to its polarity and cosmeceutical compatibility. The quantification of substances with recognized antioxidant action revealed the presence of phenols and flavonoids. Dereplication studies carried out through LC-MS/MS and GC-MS, supported by The Global Natural Product Social Molecular Networking (GNPS) platform, annotated several phenolic compounds, confirming the previous observation. In accordance, Ro decreased the production of reactive oxygen species (ROS) elicited by Fe2+ or t-BOOH and inhibited the lipid peroxidation of mitochondrial membranes in a concentration-dependent manner in RLM. Such an effect was also observed in liposomes as membrane models. Ro also prevented the oxidation of mitochondrial protein thiol groups and reduced glutathione (GSH). In model systems, Ro exhibited a potent scavenger activity toward 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide anions. It also demonstrated an Fe2+ chelating activity. Moreover, Ro did not exhibit cytotoxicity or dissipate the mitochondrial membrane potential (∆Ψ) in rat liver fibroblasts (BRL3A cells). To evaluate whether such antioxidant protective activity observed in vitro could also be achieved in vivo, a well-established model of hepatotoxicity induced by acute exposure to acetaminophen (AAP) was used. This model depletes GSH and promotes oxidative-stress-mediated tissue damage. The treatment of rats with 0.05% Ro, administered intraperitoneally for four days, resulted in inhibition of AAP-induced lipid peroxidation of the liver and the prevention of hepatotoxicity, maintaining alanine and aspartate aminotransferase (ALT/AST) levels equal to those of the normal, non-treated rats. Together, these findings highlight the potent antioxidant activity of rosemary, which is able to protect mitochondria from oxidative damage in vitro, and effects such as the antioxidant and hepatoprotective effects observed in vivo.
Collapse
Affiliation(s)
- Natalia S. S. Guimarães
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Vyctória S. Ramos
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Laura F. L. Prado-Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Rayssa M. Lopes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Gabriel S. Arini
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Luís G. P. Feitosa
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Ricardo R. Silva
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Iseli L. Nantes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Debora C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Sao Paulo State University (UNESP), Botucatu CEP 18618-687, SP, Brazil
| | - Norberto P. Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Tiago Rodrigues
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
- Correspondence: ; Tel.: +55-(11)-4996-8371
| |
Collapse
|
5
|
Effect of rosemary addition on the sensorial and physicochemical qualities of dry-cured ham slices. Measurement of camphor transfer. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractThis study determined the effect of three concentrations (R1: high, R2: medium and R3: low) of rosemary added to dry-cured ham slices vacuum packaged. pH and the colour parameters were evaluated at 0, 7, 14, 28 and 60 days of storage; visual appearance, odour, flavour and camphor content were assessed at days 7, 14, 28 and 60. The rosemary concentration changed the colour parameters, significantly altering the visual appearance (p < 0.001 at 7 and 14 days; p < 0.5 at day 28), but did not affect the pH, neither odour nor flavour. Nevertheless, significant differences were found with the time on R1 and R2 in odour (p < 0.01 and p < 0.001, respectively) and in flavour (p < 0.001). Camphor content was similar in all samples but changed over the time in R1 (p < 0.001) and R2 (p < 0.01). In conclusion, despite the differences observed, it is evident that the addition of this spice was to the liking of the panellists, in any of the concentrations used.
Collapse
|
6
|
Maleš I, Pedisić S, Zorić Z, Elez-Garofulić I, Repajić M, You L, Vladimir-Knežević S, Butorac D, Dragović-Uzelac V. The medicinal and aromatic plants as ingredients in functional beverage production. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
7
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
8
|
The Aerial Parts of Bupleurum Chinense DC. Aromatic Oil Attenuate Kainic Acid-Induced Epilepsy-Like Behavior and Its Potential Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1234612. [PMID: 35445130 PMCID: PMC9015862 DOI: 10.1155/2022/1234612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
The aerial parts of Bupleurum Chinense DC. aromatic oil (BAO) were a well-known Chinese herbal medicine plant extract used to treat epilepsy. This study aimed to explore the therapeutic effect of BAO on kainic acid- (KA-) induced epileptic rats and the possible mechanism of its antiepileptic effect. The composition and content of BAO were analyzed by GC-MS, and BAO was administered orally to alleviate the epileptic behavior induced by KA brain injection. The behavior of epileptic rats was determined by Racine grading criteria. And hematoxylin-eosin staining (HE), Nissl staining, immunohistochemistry, Elisa, Western blot, and other methods were used to study the antiepileptic mechanism of BAO, and the possible mechanism was verified by the epileptic cell model of hippocampal neurons induced by the low-Mg2+ extracellular fluid. BAO was mainly composed of terpenoids and aliphatic compounds. And BAO could improve KA-induced epilepsy-like behavior, neuroinflammation, and neurotransmitter abnormalities in the hippocampus. Furthermore, BAO could regulate the expression of GABA, NMDAR1, Notch1, and MAP2 to improve the symptoms of epilepsy. These results were also validated at the cellular level. These results indicated that BAO could alleviate the epilepsy-like behavior through the action of the Notch/NMDAR/GABA pathway.
Collapse
|
9
|
Vladimir-Knežević S, Perković M, Zagajski Kučan K, Mervić M, Rogošić M. Green extraction of flavonoids and phenolic acids from elderberry (Sambucus nigra L.) and rosemary (Rosmarinus officinalis L.) using deep eutectic solvents. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01862-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Polyethylene Films Containing Plant Extracts in the Polymer Matrix as Antibacterial and Antiviral Materials. Int J Mol Sci 2021; 22:ijms222413438. [PMID: 34948232 PMCID: PMC8708998 DOI: 10.3390/ijms222413438] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Low density polyethylene (LDPE) films covered with active coatings containing mixtures of rosemary, raspberry, and pomegranate CO2 extracts were found to be active against selected bacterial strains that may extend the shelf life of food products. The coatings also offer antiviral activity, due to their influence on the activity of Φ6 bacteriophage, selected as a surrogate for SARS-CoV-2 particles. The mixture of these extracts could be incorporated into a polymer matrix to obtain a foil with antibacterial and antiviral properties. The initial goal of this work was to obtain active LDPE films containing a mixture of CO2 extracts of the aforementioned plants, incorporated into an LDPE matrix via an extrusion process. The second aim of this study was to demonstrate the antibacterial properties of the active films against Gram-positive and Gram-negative bacteria, and to determine the antiviral effect of the modified material on Φ6 bacteriophage. In addition, an analysis was made on the influence of the active mixture on the polymer physicochemical features, e.g., mechanical and thermal properties, as well as its color and transparency. The results of this research indicated that the LDPE film containing a mixture of raspberry, rosemary, and pomegranate CO2 extracts incorporated into an LDPE matrix inhibited the growth of Staphylococcus aureus. This film was also found to be active against Bacillus subtilis. This modified film did not inhibit the growth of Escherichia coli and Pseudomonas syringae cells; however, their number decreased significantly. The LDPE active film was also found to be active against Φ6 particles, meaning that the film had antiviral properties. The incorporation of the mixture of CO2 extracts into the polymer matrix affected its mechanical properties. It was observed that parameters describing mechanical properties decreased, although did not affect the transition of LDPE significantly. Additionally, the modified film exhibited barrier properties towards UV radiation. Modified PE/CO2 extracts films could be applied as a functional food packaging material with antibacterial and antiviral properties.
Collapse
|
11
|
Polyethylene Films Coated with Antibacterial and Antiviral Layers Based on CO2 Extracts of Raspberry Seeds, of Pomegranate Seeds and of Rosemary. COATINGS 2021. [DOI: 10.3390/coatings11101179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main goal of the work was to create an internal coating based on super critical CO2 extracts of raspberry seeds, pomegranate seeds and rosemary that could be active against chosen bacterial strains. Additionally, the synergistic effect of these substances in the coating were then analysed. The next goal of the work was to demonstrate the antiviral activity of the coatings against phi6 bacteriophage particles (airborne viruses surrogate). The results of the study indicated that three coatings containing a mixture of extracts showed bacteriolytic activity against S. aureus cells and bacteriostatic activity against E. coli and B. subtilis strains. Two coatings showed bacteriolytic activity against a P. syringae strain. As a result of the experiments, a synergistic effect was noted in the active additives/compounds in the coatings. These coatings may be used as internal coatings for packaging films to extend the shelf life of selected food products. All seven coatings may also be used as external coatings with antiviral activity, as these coatings demonstrated significant effects on the phi6 phage, selected as a surrogate for airborne viruses, e.g., coronaviruses. It could be concluded that coatings I–VII will also show antiviral effects on SARS-CoV-2 particles.
Collapse
|
12
|
Cai J, Yan R, Shi J, Chen J, Long M, Wu W, Kuca K. Antifungal and mycotoxin detoxification ability of essential oils: A review. Phytother Res 2021; 36:62-72. [PMID: 34528300 DOI: 10.1002/ptr.7281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
With increased popular awareness of food safety and environmental protection, plant essential oil has attracted interest due to the absence of residue, its high efficiency, antioxidant, immune regulation, antibacterial, insecticidal, and other advantages. Their application in degradation and elimination of mycotoxin toxicity has attracted increasing attention. This paper reviews the structure, antibacterial activity, antibacterial mechanism, and toxic effects of essential oils. The inhibitory effects of various essential oils on different mycotoxins were studied. The research progress on the inhibitory effects of plant essential oils on fungi and mycotoxins in recent years was summarized to provide reference for the application of plant essential oils.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rong Yan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jichao Shi
- Liaoning Service Development Center, Shenyang, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Huyen LT, Oanh LT, Son NT, Thu NTM, Hoang NH, Yen PH, Nhiem NX, Huu Tai B, Kiem PV. A New Phenylethanoid Glycoside From the Leaves of Rosmarinus officinalis With Nitric Oxide Inhibitory Activity. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20969088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new phenylethanoid glycoside, named rosmacinalis (1), and 6x known compounds {2-phenylethyl O-α-L-rhamnopyranosyl-(1‴→6″)- O-β-D-glucopyranoside (2), clinopodiolide C (3), rosmanol (4), 7 α-methoxyrosmanol (5) 7 β-methoxyrosmanol (6) and carnosol (7)} were isolated from the leaves of Rosmarinus officinalis. Their structures were determined by extensive analysis of high-resolution electron spray ionization mass spectrum and nuclear magnetic resonance spectral data, as well as by comparison of the spectral data with those reported in the literature. Anti-inflammatory activity of compounds 1‐7 was evaluated by their inhibition of NO production in lipopolysaccharide-stimulated RAW 264.7 cells. At a concentration of 100 µM, compounds 1 and 2 exhibited inhibitory rates of 47.1% ± 2.2% and 44.5% ± 1.3%, respectively, while compounds 3‐7 showed a cytotoxic effect. After dilution to a concentration of 20 µM, except compound 7, compounds 1‐6 did not show a cytotoxic effect. Their NO inhibitory rates ranged from 14.2% ± 1.3% to 31.1% ± 1.9%.
Collapse
Affiliation(s)
- Le Thi Huyen
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Le Thi Oanh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Nguyen Thi Son
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | | | - Nguyen Huy Hoang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Pham Hai Yen
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
14
|
Baldim I, Souza CRF, Durazzo A, Lucarini M, Santini A, Souto EB, Oliveira WP. Spray-Dried Structured Lipid Carriers for the Loading of Rosmarinus officinalis: New Nutraceutical and Food Preservative. Foods 2020; 9:E1110. [PMID: 32823508 PMCID: PMC7466245 DOI: 10.3390/foods9081110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Rosemary, an aromatic herb with significant antioxidative activity, is frequently used as food preservative and a source of nutraceuticals. Its antioxidant effect is mainly related to the presence of phenolic compounds, molecules considerably unstable and prone to irreversible physicochemical changes when exposed to external agents. We here proposed the loading of rosemary into structured lipid systems to improve its physicochemical properties. Four formulations were prepared using the same amount of rosemary lyophilized extract. The lipid phase was composed of stearic acid and oleic acid, and the aqueous phase, a varying combination of drying carriers (whey protein concentrate or gum Arabic) and surfactant (Poloxamer 188). The formulations were sonicated, spray-dried, and the obtained powders were characterized regarding the density (0.18 g/mL to 0.26 g/mL), particle size distribution (7 µm and 52 µm), and water solubility (29% to 48%). The antioxidant activity was determined by applying ABTS•+ radical-scavenging assay and the results expressed per gram of lyophilized extract (150.6 μmol Trolox/g to 376.4 μmol Trolox/g), with a significantly lower/higher result seen for formulations containing gum Arabic and a higher concentration of Poloxamer. The prepared systems may have potential applications as preservative in foodstuff and as nutraceutical.
Collapse
Affiliation(s)
- Iara Baldim
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, São Paulo 14040-903, Brazil; (I.B.); (C.R.F.S.)
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Claudia R. F. Souza
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, São Paulo 14040-903, Brazil; (I.B.); (C.R.F.S.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- CEB–Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Wanderley P. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, São Paulo 14040-903, Brazil; (I.B.); (C.R.F.S.)
| |
Collapse
|
15
|
Bustamante MÁ, Michelozzi M, Barra Caracciolo A, Grenni P, Verbokkem J, Geerdink P, Safi C, Nogues I. Effects of Soil Fertilization on Terpenoids and Other Carbon-Based Secondary Metabolites in Rosmarinus officinalis Plants: A Comparative Study. PLANTS 2020; 9:plants9070830. [PMID: 32630705 PMCID: PMC7411580 DOI: 10.3390/plants9070830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
Abstract
Rosmarinus officinalis is an evergreen aromatic plant with important commercial interest as it contains numerous essential oils (composed of terpenoid compounds) and phenolic constituents (natural antioxidant compounds). This work aims at evaluating the concomitant effects of different inorganic and organic fertilization treatments and the subsequent increases in soil nutrient availability on terpenoids and other carbon-based secondary metabolites, e.g., flavonoids and phenolic compounds, in Rosmarinus officinalis leaves. The results showed that, as expected, the structural carbohydrate content (lignocellulosic compounds) in stems was higher in fertilized plants than in controls. Additionally, positive correlations were observed of the absolute amounts of total terpenoids and some single terpenoid compounds with N or P contents in leaves. On the contrary, the phenolic and flavonoid concentrations in all the rosemary plant parts were lower with the fertilization treatments. Indeed, negative correlations between the phenolic compounds (and flavonoids) and N in rosemary leaves were also found. Overall, the results suggest that the terpenoid production's response to fertilization was due to N, which is essential for protein synthesis and terpene synthase activity, and to P, which is necessary for the synthesis of both terpenoid precursors and ATP and NADPH, also needed for terpenoid synthesis. On the other hand, the basis for the fertilization's effects on the production of phenolic compounds is the direct nitrogen trade-off between growth and the shikimic acid pathway by which phenolics compounds are synthesized.
Collapse
Affiliation(s)
- Maria Ángeles Bustamante
- Department of Agrochemistry and Environment, Miguel Hernandez University, EPS-Orihuela, ctra. Beniel km 3.2, 03312 Orihuela, Spain;
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council, via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy;
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council, Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy; (A.B.C.); (P.G.)
| | - Paola Grenni
- Water Research Institute, National Research Council, Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy; (A.B.C.); (P.G.)
| | - Janine Verbokkem
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.V.); (P.G.); (C.S.)
| | - Peter Geerdink
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.V.); (P.G.); (C.S.)
| | - Carl Safi
- Wageningen Food & Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (J.V.); (P.G.); (C.S.)
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems, National Research Council, Via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
- Correspondence: ; Tel.: +39-06-9067-2227
| |
Collapse
|