1
|
Liu Y, Sheng S, Wu L, Wang H, Xue H, Wang R. Flavonoid-rich extract of Paederia scandens (Lour.) Merrill improves hyperuricemia by regulating uric acid metabolism and gut microbiota. Food Chem 2025; 471:142857. [PMID: 39823906 DOI: 10.1016/j.foodchem.2025.142857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Paederia scandens (Lour.) Merrill flavonoid-rich extract (PSMF) has shown excellent xanthine oxidase (XOD) inhibitory activity in our previous study. However, the efficacy of PSMF in mitigating hyperuricemia (HUA) remains to be elucidated. In this study, we investigated the effects and mechanisms of PSMF on alleviating in HUA mice. The results showed that PSMF intervention reduced serum levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN), and inhibited the activities of XOD and adenosine deaminase (ADA). In addition, PSMF treatment not only attenuated the inflammatory response and renal damage but also regulated the expression of UA synthesis genes and UA excretion genes. Finally, PSMF ameliorated gut microbiota dysbiosis in HUA mice by enriching the abundance of short-chain fatty acid (SCFA)-producing bacteria. In summary, PSMF appears to be a promising natural source for the prevention and treatment of HUA.
Collapse
Affiliation(s)
- Yuyi Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shanling Sheng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Linye Wu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Huixian Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Liu Y, Deng W, Wei F, Kang X, Han R, Feng X, Li C, Li M, Zhao G, Yu J, Liu C. Recent Advances in the Application of Foodborne Substances in Hyperuricemia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27639-27653. [PMID: 39630974 DOI: 10.1021/acs.jafc.4c07267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Hyperuricemia (HUA) is a purine metabolism disorder characterized by the excessive production or inadequate excretion of uric acid. Current pharmacological strategies targeting uric acid reduction have potential adverse effects. Following the concept of "homology of medicine and food", food ingredients are increasingly being explored to prevent HUA and gout, with xanthine oxidase (XOD) emerging as a crucial therapeutic target in managing HUA. Recent scientific investigations have determined that uric acid-lowering substances come from various food sources, such as seafood, dairy products, and agricultural products. These bioactive substances have attracted wide attention because of their effective antihyperuricemia and XOD inhibitory ability. In this study, the pathogenesis, many side effects of uric acid-lowering drugs, and some components of uric acid-lowering drugs are mainly described, with emphasis on the source, composition, preparation technology, and mechanism of uric acid-lowering peptides.
Collapse
Affiliation(s)
- Yanxia Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Deng
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Fashan Wei
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Chuang Li
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaoyun Li
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiming Zhao
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiahuan Yu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chun Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Fang B, Lu L, Zhao M, Luo X, Jia F, Feng F, Wang J. Mulberry ( Fructus mori) extract alleviates hyperuricemia by regulating urate transporters and modulating the gut microbiota. Food Funct 2024; 15:12169-12179. [PMID: 39585739 DOI: 10.1039/d4fo03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Mulberry (Fructus mori) is a traditional Chinese fruit that has beneficial effects due to its numerous biological activities. This study aimed to investigate the anti-hyperuricemic activity and underlying mechanism of laboratory-prepared mulberry water extract in mice with hyperuricemia (HUA). Additionally, the effect of mulberry extract (ME) on the microbiota was investigated. The results demonstrated that ME reduced the levels of HUA-related biochemical indices [uric acid (UA), creatinine (Cr), and blood urea nitrogen (BUN)] and pro-inflammatory factors (TNF-α, IL-6, IL-8, and IL-1β) in the serum of HUA model mice. ME suppressed xanthine oxidase (XOD) and adenosine deaminase (ADA) activity while modulating the expression of the urate transporters ATP-binding cassette transporter G2 (ABCG2) and recombinant urate transporter 1 (URAT1) in the kidney. Furthermore, high-dose ME modulated the microbiota, including Ligilactobacillus, Prevotellaceae, Bacteroides and Desulfovibrio. Overall, these results demonstrate the efficacy of ME in alleviating HUA by inhibiting XOD and ADA activity, as well as modulating transport proteins to decrease urate synthesis. Additionally, ME regulates the microbiota associated with host UA metabolism. These findings confirm the UA-lowering effects of ME, highlighting its potential as a therapeutic agent for HUA.
Collapse
Affiliation(s)
- Beicheng Fang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lu Lu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaohu Luo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Fuhuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo, 315000, China.
| | - Fengqin Feng
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jing Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315000, China.
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo, 315000, China.
| |
Collapse
|
4
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Wu L, Yi K, Xiao Z, Xia Q, Cao Y, Chen S, Li Y. A metabolomics perspective reveals the mechanism of the uric acid-lowering effect of Prunus salicina Lindl. cv. "furong" polyphenols in hypoxanthine and potassium oxybate-induced hyperuricemic mice. Food Funct 2024; 15:8823-8834. [PMID: 39115429 DOI: 10.1039/d4fo02391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The incidence of hyperuricemia (HUA) shows a gradually increasing trend towards affecting younger individuals, and it can significantly harm the overall health status of the body. Based on a metabolomics perspective, this study reveals the mechanism of the uric acid-lowering action of Prunus salicina Lindl. cv. "furong" polyphenols (PSLP) on a hyperuricemia mouse model induced by hypoxanthine and potassium oxybutyrate. The results demonstrate that PSLP comprise an effective treatment strategy for reducing the levels of serum uric acid (SUA), serum creatinine (SCr) and blood urea nitrogen (BUN) in HUA mice (p < 0.05), wherein the maximum decrease rates are up to 44.50%, 29.46%, and 32.95%, respectively. PSLP are observed to exert a pronounced inhibitory effect on the activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the livers of HUA mice, with reductions of up to 16.36% and 20.13%, respectively. These findings illustrate that PSLP exert a significant uric acid-lowering effect. Subsequent metabolomic analysis of mouse serum identified 28 potential biomarkers for hyperuricemia, whose levels were markedly diminished by PSLP. This process involved alterations in purine, glycine, the pentose phosphate pathway, and galactose metabolism. Twenty-eight potential biomarkers were identified for hyperuricemia by subsequent metabolomic analysis of mouse serum, whose levels were markedly reversed by PSLP intervention. The regulation of HUA by PSLP involved alterations in purine metabolism, glycerolipid metabolism, the pentose phosphate pathway, and galactose metabolism. The mechanism of PSLP ameliorated hyperuricemia might be attributed to reduction of the level of the uric acid precursor ribose-5-phosphate in the pentose phosphate pathway, the inhibition of the activities of uric acid synthase XOD and ADA in purine metabolism, and reduction of the synthesis of the end product uric acid. This study provides a theoretical basis for the development of functional foods based on PSLP, which can potentially reduce uric acid levels.
Collapse
Affiliation(s)
- Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
- National R & D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Kexin Yi
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheng Xiao
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
- National R & D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuping Cao
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shouhui Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
- National R & D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
6
|
Li K, Wang Y, Liu W, Zhang C, Xi Y, Zhou Y, Li H, Liu X. Structure-Activity Relationships and Changes in the Inhibition of Xanthine Oxidase by Polyphenols: A Review. Foods 2024; 13:2365. [PMID: 39123556 PMCID: PMC11312107 DOI: 10.3390/foods13152365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperuricemia (HUA), or elevated uric acid in the blood, has become more prevalent in recent years. Polyphenols, which are known to have good inhibitory activity on xanthine oxidoreductase (XOR), are effective in uric acid reduction. In this review, we address the structure-activity relationship of flavonoids that inhibit XOR activity from two perspectives: the key residues of XOR and the structural properties of flavonoids. Flavonoids' inhibitory effect is enhanced by their hydroxyl, methoxy, and planar structures, whereas glycosylation dramatically reduces their activity. The flavonoid structure-activity relationship informed subsequent discussions of the changes that occur in polyphenols' XOR inhibitory activity during their extraction, processing, gastrointestinal digestion, absorption, and interactions. Furthermore, gastrointestinal digestion and heat treatment during processing can boost the inhibition of XOR. Polyphenols with comparable structures may have a synergistic effect, and their synergy with allopurinol thus provides a promising future research direction.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Yumei Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Wanlu Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | | | - Yu Xi
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Yanv Zhou
- The Product Makers Co., Ltd., Shanghai 200444, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| |
Collapse
|
7
|
Peng X, Liu K, Hu X, Gong D, Zhang G. Hesperitin-Copper(II) Complex Regulates the NLRP3 Pathway and Attenuates Hyperuricemia and Renal Inflammation. Foods 2024; 13:591. [PMID: 38397567 PMCID: PMC10888018 DOI: 10.3390/foods13040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Hyperuricaemia (HUA) is a disorder of purine metabolism in the body. We previously synthesized a hesperitin (Hsp)-Cu(II) complex and found that the complex possessed strong uric acid (UA)-reducing activity in vitro. In this study we further explored the complex's UA-lowering and nephroprotective effects in vivo. METHODS A mouse with HUA was used to investigate the complex's hypouricemic and nephroprotective effects via biochemical analysis, RT-PCR, and Western blot. RESULTS Hsp-Cu(II) complex markedly decreased the serum UA level and restored kidney tissue damage to normal in HUA mice. Meanwhile, the complex inhibited liver adenosine deaminase (ADA) and xanthine oxidase (XO) activities to reduce UA synthesis and modulated the protein expression of urate transporters to promote UA excretion. Hsp-Cu(II) treatment significantly suppressed oxidative stress and inflammatory in the kidney, reduced the contents of cytokines and inhibited the activation of the nucleotide-binding oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory pathway. CONCLUSIONS Hsp-Cu(II) complex reduced serum UA and protected kidneys from renal inflammatory damage and oxidative stress by modulating the NLRP3 pathway. Hsp-Cu(II) complex may be a promising dietary supplement or nutraceutical for the therapy of hyperuricemia.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
- Department of Biological Engineering, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Kai Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| |
Collapse
|
8
|
Zhou X, Zhang B, Zhao X, Zhang P, Guo J, Zhuang Y, Wang S. Coffee Leaf Tea Extracts Improve Hyperuricemia Nephropathy and Its Associated Negative Effect in Gut Microbiota and Amino Acid Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17775-17787. [PMID: 37936369 DOI: 10.1021/acs.jafc.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hyperuricemia nephropathy (HN) is a metabolic disease characterized by tubular damage, tubulointerstitial fibrosis, and uric acid kidney stones and has been demonstrated to be associated with hyperuricemia. Coffee leaf tea is drunk as a functional beverage. However, its prevention effects on HN remain to be explored. This study showed that coffee leaf tea extracts (TE) contain 19 polyphenols, with a total content of 550.15 ± 27.58 mg GAE/g. TE decreased serum uric acid levels via inhibiting XOD activities and modulating the expression of urate transporters (GLUT9, OAT3, and ABCG2) in HN rats. TE prevented HN-induced liver and kidney damage and attenuated renal fibrosis. Moreover, it upregulated the abundance of SCFA-producing bacteria (Phascolarctobacterium, Alloprevotella, and Butyricicoccus) in the gut and reversed the amino acid-related metabolism disorder caused by HN. TE also decreased the circulating LPS and d-lactate levels and increased the fecal SCFA levels. This study supported the preliminary and indicative effect of coffee leaf tea in the prevention of hyperuricemia and HN.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pixian Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
9
|
Wang R, Yue X, Shan G, Qiu X, Wang L, Yang L, Li J, Yang B. A novel multi-hyphenated approach to screen and character the xanthine oxidase inhibitors from saffron floral bio-residues. Int J Biol Macromol 2023; 248:125990. [PMID: 37499709 DOI: 10.1016/j.ijbiomac.2023.125990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Recently, the incidence of hyperuricemia increased with patient rejuvenation, searching for new xanthine oxidase (XOD) inhibitors from natural products becomes important. In our previous work, a flavonoid extract of saffron floral bio-residues (SFB) was found to alleviate hyperuricemia via inhibiting XOD. In this study, an integrated approach combining two-dimensional liquid chromatography, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) was developed to online screen and character the potential XOD inhibitors from SFB. The two-dimensional liquid chromatography consisted of affinity chromatography and reverse phase chromatography (2D-AR), in which an XOD column, an inactive XOD column, and a control column were used in the first dimensional liquid chromatography to avoid phenomena of "false positive" and "missing screen of compounds with weak affinity to XOD" that often occur in the screening process, and a C18 column was used in the second dimensional liquid chromatography to separate the mixed XOD binders. Four flavonoid glycosides, i.e., quercetin-3-O-sophoroside (QS), kaempferol-3-O-sophoroside (KS), kaempferol-3-O-rutinoside (KR), and kaempferol-3-O-glucoside (KG), were thus successfully screened and identified from SFB extract by the 2D-AR method. The affinity of QS, KS, KR, KG, kaempferol (aglycone of KS, KR and KG), and quercetin (aglycone of QS) binding to XOD was investigated using SPR method, with KD ranged from 4.8 μM to 47.6 μM. The inhibitor constant (KI) of KS, KR, KG, quercetin and kaempferol were 4.92 mM, 1.11 mM, 0.294 mM, 4.93 μM and 3.27 μM, respectively, determined using ITC method. Finally, the anti-XOD activities of KS, the most abundant flavonoid in SFB extract, and kaempferol in hyperuricemia mice were verified, which suggested that the multi-hyphenated approach established herein can be applied for screen and character the XOD inhibitors in natural products.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xingnan Yue
- Shanxi University of Chinese Medicine, College of Basic Medical Sciences, Jinzhong 030619, PR China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Xiaodan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Jiaqi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
10
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|