1
|
Yoon KN, Yang J, Yeom SJ, Kim SS, Park JH, Song BS, Eun JB, Park SH, Lee JH, Kim HB, Lee JH, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 protects weaning mice from ETEC infection and enhances gut health. Front Microbiol 2024; 15:1440134. [PMID: 39318427 PMCID: PMC11420142 DOI: 10.3389/fmicb.2024.1440134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Maintaining a healthy intestinal environment, optimal epithelial barrier integrity, and balanced gut microbiota composition are essential for the growth performance of weaning pigs. We identified Lactiplantibacillus argentoratensis AGMB00912 (LA) in healthy porcine feces as having antimicrobial activity against pathogens and enhanced short-chain fatty acid (SCFA) production. Herein, we assess the protective role of LA using a weaning mouse model with enterotoxigenic Escherichia coli (ETEC) infection. LA treatment improves feed intake and weight gain and alleviates colon shortening. Furthermore, LA inhibits intestinal damage, increases the small intestine villus height compared with the ETEC group, and enhances SCFA production. Using the Kyoto Encyclopedia of Genes and Genomes and other bioinformatic tools, including InterProScan and COGNIZER, we validated the presence of SCFA-producing pathways of LA and Lactiplantibacillus after whole genome sequencing. LA mitigates ETEC-induced shifts in the gut microbiota, decreasing the proportion of Escherichia and Enterococcus and increasing SCFA-producing bacteria, including Kineothrix, Lachnoclostridium, Roseuburia, Lacrimispora, Jutongia, and Blautia. Metabolic functional prediction analysis revealed enhanced functions linked to carbohydrate, amino acid, and vitamin biosynthesis, along with decreased functions associated with infectious bacterial diseases compared to the ETEC group. LA mitigates the adverse effects of ETEC infection in weaning mice, enhances growth performance and intestinal integrity, rebalances gut microbiota, and promotes beneficial metabolic functions. These findings validate the functionality of LA in a small animal model, supporting its potential application in improving the health and growth performance of weaning pigs.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jihye Yang
- Departments of Food and Animal Biotechnology and Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Sang-Su Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Ju-Hoon Lee
- Departments of Food and Animal Biotechnology and Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
2
|
Di Z, Zhenni C, Zifeng Z, Bei J, Yong C, Yixuan L, Yuwei P, Li G, Jiaxu C, Guoping Z. Danggui Sini Decoction normalizes the intestinal microbiota and serum metabolite levels to treat sciatica. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155740. [PMID: 39059091 DOI: 10.1016/j.phymed.2024.155740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Sini Decoction (DGSD), which is commonly used to treat sciatica, has been shown to have an analgesic effect, but the underlying mechanisms are unclear. Here, Danggui Sini Decoction was shown to normalize the intestinal microbiota and serum metabolite levels to exert an analgesic effect. AIM OF THE STUDY This study aimed to elucidate the therapeutic effects of DGSD on sciatica and the underlying mechanisms involved. METHODS In this study, we conducted chronic constriction injury (CCI) model. Mecobalamin and DGSD were administered to CCI rats. Behavioural tests were used to examine the therapeutic effects of the drugs. UHPLC was used to identify DGSD components. 16S rRNA gene sequencing analysis of the intestinal flora was used to analyse the effect of DGSD on the intestinal microbiota. UHPLC‒MS/MS was used to identify blood metabolites. KEGG pathway analysis of differentially abundant metabolites was subsequently conducted. ELISA was used to measure the serum inflammatory factor levels, and correlation analysis between the serum inflammatory factor levels and intestinal microbe abundance was conducted. PCR, western blotting, and immunohistochemical staining were used to validate the results of the KEGG pathway analysis. RESULTS After CCI, the rats exhibited obvious thermal hyperalgesia; disruption of sciatic nerve structure; increased IL1α, SP, CCL5, and PGE2 levels; decreased IL10 levels in the blood; increased IL1β, IL6, COX2, MMP9, nNOS, and p-NF-κB levels; and decreased IL4 levels in the sciatic nerve. In addition, CCI led to increased abundances of Peptostreptococcaceae, Leuconostocaceae, Christensenellaceae, Akkermansiaceae, Staphylococcaceae, Romboutsia, Marvinbryantia, Turicibacter, Weissella, UCG-005, Christensenellaceae_R-7_group, Akkermansia, Staphylococcus, Romboutsia_ilealis, Weissella_paramesenteroides, and Akkermansia_muciniphila and decreased abundances of Lactobacillaceae, Lactobacillus, Lactobacillus_murinus, and Lactobacillus_johnsonii. Correlation analysis indicated that Turicibacter abundance was most strongly related to IL1α, PGE2, IL10, and CCL5 levels, while norank_o_Coriobacteriales abundance had the weakest relationship with SP levels. KEGG pathway analysis of the differentially abundant metabolites revealed that the 'NF-kappa B signalling pathway' was involved in sciatica. DGSD reduced the levels of inflammatory factors, including IL1α, SP, CCL5, PGE2, IL6, COX2, and MMP9, in the blood and sciatic nerve and inhibited nNOS and NF-κB phosphorylation. DGSD improved the abundance of probiotics, including Lactobacillus and Blautia, and lowered the abundance of harmful bacteria, including Romboutsia, Turicibacter, and Weissella. DGSD promoted the repair of the injured sciatic nerve. CONCLUSIONS DGSD can treat sciatica by inhibiting intestinal microbiota disorders induced by CCI in rats, normalizing inflammatory factor levels, and promoting nerve repair.
Collapse
Affiliation(s)
- Zhang Di
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chen Zhenni
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhuang Zifeng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing Bei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Cao Yong
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yixuan
- Guangzhou Medical University Affiliated Traditional Chinese Medicine Hospital, China
| | - Pan Yuwei
- Guangzhou Medical University Affiliated Traditional Chinese Medicine Hospital, China
| | - Gao Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Chen Jiaxu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Zhao Guoping
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Yoon KN, Lee HG, Yeom SJ, Kim SS, Park JH, Song BS, Yi SW, Do YJ, Oh B, Oh SI, Eun JB, Park SH, Lee JH, Kim HB, Lee JH, Hur TY, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates salmonellosis and modulates gut microbiota in weaned piglets: a pilot study. Sci Rep 2024; 14:15466. [PMID: 38965336 PMCID: PMC11224356 DOI: 10.1038/s41598-024-66092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Seo-Joon Yeom
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sang-Su Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jong-Heum Park
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Beom-Seok Song
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Won Yi
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Byungkwan Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Jae-Kyung Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
4
|
Shan L, Chelliah R, Rahman SME, Hwan Oh D. Unraveling the gut microbiota's role in Rheumatoid arthritis: dietary pathways to modulation and therapeutic potential. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38832654 DOI: 10.1080/10408398.2024.2362412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Rheumatoid arthritis (RA) is a significant global health issue. Recent research highlights the gut microbiota's critical role in RA's development, noting how dietary factors can alter these microbial communities. This has led to an increased focus on how the gut microbiota (GM) influences RA and the potential for dietary ingredients to offer anti-RA benefits by modifying GM. This review presents a concise examination of the GM associated with RA, identifying specific microbial taxa at various levels that are implicated in the disease. It delves into dietary components known for their anti-RA properties through GM modulation and their mechanisms. Findings from numerous studies, including both animal and human research, show significant differences in the GM composition between individuals with early and established RA. Certain microbes like Tenericutes, Synergistetes, and Proteobacteria have been linked to RA progression, whereas Bacteroidetes and some strains of Lactobacillus are shown to have protective effects against RA. Dietary elements such as fibers, polysaccharides, resistant starch, and peptides have been identified as influential in combating RA. These components work by altering the GM's metabolites and impacting immune cells related to the GM. This review suggests the potential for developing functional foods aimed at treating RA by targeting GM.
Collapse
Affiliation(s)
- LingYue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| | - Syed Mohammad Ehsanur Rahman
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Republic of South Korea
- Future F Biotech Co., Ltd, Chuncheon, Republic of South Korea
| |
Collapse
|
5
|
SHI J, XIE Y, LI Y, REN D, ZHANG Y, SHAO H, LIU Y, WANG X, LI Y. Effects of food-grade iron(III) oxide nanoparticles on cecal digesta- and mucosa-associated microbiota and short-chain fatty acids in rats. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:43-54. [PMID: 38188661 PMCID: PMC10767317 DOI: 10.12938/bmfh.2023-012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/21/2023] [Indexed: 01/09/2024]
Abstract
Although iron(III) oxide nanoparticles (IONPs) are widely used in diverse applications ranging from food to biomedicine, the effects of IONPs on different locations of gut microbiota and short-chain fatty acids (SCFAs) are unclear. So, a subacute repeated oral toxicity study on Sprague Dawley (SD) rats was performed, administering low (50 mg/kg·bw), medium (100 mg/kg·bw), and high (200 mg/kg·bw) doses of IONPs. In this study, we found that a high dose of IONPs increased animal weight, and 16S rRNA sequencing revealed that IONPs caused intestinal flora disorders in both the cecal digesta- and mucosa-associated microbiota. However, only high-dose IONP exposure changed the abundance and composition of the mucosa-associated microbiota. IONPs increased the relative abundances of Firmicutes, Ruminococcaceae_UCG-014, Ruminiclostridium_9, Romboutsia, and Bilophila and decreased the relative abundance of Bifidobacterium, and many of these microorganisms are associated with weight gain, obesity, inflammation, diabetes, and mucosal damage. Functional analysis showed that changes in the gut microbiota induced by a high dose of IONPs were mainly related to metabolism, infection, immune, and endocrine disease functions. IONPs significantly elevated the levels of valeric, isobutyric, and isovaleric acid, promoting the absorption of iron. This is the first description of intestinal microbiota dysbiosis in SD rats caused by IONPs, and the effects and mechanisms of action of IONPs on intestinal and host health need to be further studied and confirmed.
Collapse
Affiliation(s)
- Jiangchun SHI
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yumeng XIE
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yulin LI
- Department of Hospital-acquired Infection Management, Guizhou
Provincial People’s Hospital, Guiyang 550002, China
| | - Dongxia REN
- Department of Blood Transfusion, Tangdu Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Yiqi ZHANG
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Huangfang SHAO
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yang LIU
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Xue WANG
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
| | - Yun LI
- West China School of Public Health and West China Fourth
Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory of Food Safety Monitoring and Risk
Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
6
|
Ye C, Gao ZH, Chen KQ, Lu FG, Wei K. Research on Pachymaran to Ameliorate CsA-Induced Immunosuppressive Lung Injury by Regulating Microflora Metabolism. Microorganisms 2023; 11:2249. [PMID: 37764093 PMCID: PMC10537689 DOI: 10.3390/microorganisms11092249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Pachymaran (PCP), the major medicinal constituent of Poria cocos, has a regulatory effect on immunosuppressive lung injury, but its mechanism of action with respect to gut microorganisms and their metabolites is not clear. The aim of this study was to investigate the protective effect of PCP against immunosuppressive lung injury caused by cyclosporine A (CsA), and to reveal its possible mechanism of action via the comprehensive analysis of 16S rRNA and LC-MS. We demonstrated that PCP was effective at alleviating CsA-induced immunosuppressive lung injury by restoring the organ indices and lung tissue morphology and structure. PCP significantly altered the composition of the gut and lung microbiota in mice with CsA-induced immunosuppressive lung injury by increasing the number of beneficial bacteria from the Eubacterium nodatum group, Eubacterium ventriosum group, Akkermansia, and Ruminococcus, and reducing the pathogenic Rikenellaceae RC9 gut group to fulfill its immunomodulatory role. In lung tissue microecology, PCP intervention significantly reduced the abundance of Chryseobacterium, Lawsonella, Paracoccus, and Sediminibacterium and increased the abundance of Alloprevotella. The LC-MS results showed that PCP alleviated the CsA-induced immunosuppression of lung tissue injury. The model serum metabolite Americine decreased the expression of PC(O-18:1(4Z)/0:0). Our results suggest that PCP may be involved in regulating the composition, function, and metabolism of the gut and lung microbiota to reverse CsA-induced immunosuppressive lung injury.
Collapse
Affiliation(s)
| | | | | | | | - Ke Wei
- Medicine School, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Y.); (Z.-H.G.); (K.-Q.C.); (F.-G.L.)
| |
Collapse
|
7
|
Cao Y, Zhang S, Tang L, Chen Y, Jiang S, Liu L, Gao X. Exploring the effects of Qijiao Shengbai capsule on leukopenic mice from the perspective of intestinbased on metabolomics and 16S rRNA sequencing. Heliyon 2023; 9:e19949. [PMID: 37810141 PMCID: PMC10559567 DOI: 10.1016/j.heliyon.2023.e19949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Qijiao Shengbai capsule (QJSB) is formulated according to the traditional Chinese medicine formula, its function is to nourish Qi and blood, improve the body's immunity. Leukopenia has been treated with it in clinical settings. However, the mechanism of leukopenia from the perspective of intestinal tract has not been reported. This study combined metabolomics and 16S rRNA sequencing technologies to investigate the mechanism of QJSB on leukopenia from the intestine. As a result of cyclophosphamide induction in mice, the results demonstrated that QJSB may greatly increase the quantity of peripheral leukocytes (including neutrophils). Meanwhile, QJSB had a restorative effect on the colon of leukopenic mice; it also increased the level of IL-2, IL-6 and G-CSF in the intestine, further enhancing the immunity and hematopoietic function of mice. Metabolic studies showed that QJSB altered 27 metabolites, most notably amino acid metabolism. In addition, QJSB had a positive regulatory effect on the intestinal microbiota, and could alter community composition by improving the diversity and abundance of the intestinal microbial, which mainly involved 6 related bacterial groups, and primarily regulates three associated SCFAs (acetic acid, butyrate acid and valeric acid). Therefore, this study suggests that QJSB can improve hematopoietic function, enhance the immune system, relieve leucopenia and improve the gut in leucopenic mice by modulating metabolic response pathways, fecal metabolites and intestinal microbiota.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Experimental Animal Center of Guizhou Medical University, Guiyang 550025, China
| | - Li Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yixuan Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Siyue Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Li Liu
- Guizhou Hanfang Pharmaceutical Co., Ltd., Guiyang 550002, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
8
|
Guo P, Wang Z, Lv X, Wang X, Yu J, Tian X, Shan H, Qin Z. Changyanning regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88. Front Microbiol 2023; 14:1098818. [PMID: 36778862 PMCID: PMC9909429 DOI: 10.3389/fmicb.2023.1098818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common pathogen of swine colibacillosis, which can causing a variety of diseases initiate serious economic losses to the animal husbandry industry. The traditional Chinese medicine Changyanning (CYN) often used for diarrhea caused by the accumulation of damp heat in the gastrointestinal tract, has anti-bacterial, anti-inflammatory and anti-oxidation effects. This study investigated the effect of CYN on gut microbiota and metabolism in mice infected with ETEC K88. A total of 60 Kunming mices were divided into Control group, ETEC K88 group, CYN.L group (2.5 g/kg), CYN.M group (5 g/kg), CYN.H group (10 g/kg) and BTW group (10 g/kg), determined clinical symptoms, intestinal morphology, inflammatory responses, gut microbiota as well as serum metabolites. CYN administration elevated ETEC K88-induced body weight loss, ameliorated duodenum, ilem, colon pathological injury, and reduced the increase of spleen index caused by ETEC. CYN also reduced the levels of pro-inflammatory cytokines (IL-6, TNE-α) in the serum. 16s rRNA gene sequencing results showed that CYN increased the abundance of beneficial bacteria Lactobacillus but decreased the abundance of pathogenic bacteria Escherichia in the feces of mice. Moreover, CYN participates in amino acid biosynthesis and metabolism in the process of serum metabolism to regulates ameliorate intestinal injury induced by ETEC K88. In conclusion, CYN regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88.
Collapse
Affiliation(s)
- Pei Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zongke Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaojing Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiaying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuelei Tian
- QingDao Xnoba Biological Technology Co., Ltd., Qingdao, Shandong, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China,*Correspondence: Zhihua Qin, ✉
| |
Collapse
|