1
|
Bouchoux G. Gas phase basicities of polyfunctional molecules. Part 6: Cyanides and isocyanides. MASS SPECTROMETRY REVIEWS 2018; 37:533-564. [PMID: 28621817 DOI: 10.1002/mas.21538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/15/2017] [Indexed: 05/26/2023]
Abstract
This paper gathers structural and thermochemical informations related to the gas-phase basicity of molecules containing cyanides (nitriles) and isocyanides (isonitriles) functional groups. It constitutes the sixth part of a general review devoted to gas-phase basicities of polyfunctional compounds. A large corpus of cyanides and isocyanides molecules is examined under seven major chapters. In the first one, a rapid overview of the definitions and methods leading to gas-phase basicity, GB, proton affinity, PA, and protonation entropy, Δp S°, is given. In the same chapter, several aspects of the gas phase chemistry of protonated cyanides and isocyanides are also presented. Chapters II-VI detail the protonation energetics of aliphatic, unsaturated, and heteroatom substituted (halogens, O, S, N, P) cyanides. A seventh chapter is devoted to isocyanides. Experimental data available in the literature (120 references) were reevaluated according to the presently adopted basicity scale that is the NIST database anchored to PA(NH3 ) = 853.6 kJ/mol and GB (NH3 ) = 819 kJ/mol. In this latter source, however, several erroneous values have been identified which were corrected in the present review. Structural and energetic information given by G4MP2 quantum chemistry computations on ca. 60 typical systems are presented. The present review includes the GB, PA, and Δp S° values of ca. 110 cyanides and isocyanides, and, for selected examples, is completed by a set of computed heats of formation (Δf H°) at 0 and 298 K.
Collapse
Affiliation(s)
- Guy Bouchoux
- Département de Chimie, Laboratoire de Chimie Moléculaire, UMR CNRS 9168, Ecole Polytechnique, Palaiseau, France
- Université Paris-Sud XI, ICMO, Orsay, France
| |
Collapse
|
2
|
Bénidar A, Georges R, Guillemin JC, Mó O, Yáñez M. Infrared Spectra of a Species of Potential Prebiotic and Astrochemical Interest: Cyanoethenethiol (NC−CH═CH−SH). J Phys Chem A 2010; 114:9583-8. [DOI: 10.1021/jp105650e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Abdessamad Bénidar
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes France, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049-Madrid, Spain
| | - Robert Georges
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes France, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049-Madrid, Spain
| | - Jean-Claude Guillemin
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes France, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049-Madrid, Spain
| | - Otilia Mó
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes France, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049-Madrid, Spain
| | - Manuel Yáñez
- Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes 1, 35042 Rennes France, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France, Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049-Madrid, Spain
| |
Collapse
|
3
|
Lamsabhi AM, Mó O, Yáñez M, Guillemin JC, Haldys V, Tortajada J, Salpin JY. Ni(+) reactions with aminoacetonitrile, a potential prebiological precursor of glycine. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:317-326. [PMID: 18064577 DOI: 10.1002/jms.1313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The gas-phase reactions between Ni(+) ((2)D(5/2)) and aminoacetonitrile, a molecule of prebiological interest as possible precursor of glycine, have been investigated by means of mass spectrometry techniques. The mass-analyzed ion kinetic energy (MIKE) spectrum reveals that the adduct ions [NC--CH(2)--NH(2), Ni(+)] spontaneously decompose by loosing HCN, H(2), and H(2)CNH, the loss of hydrogen cyanide being clearly dominant. The structures and bonding characteristics of the aminoacetonitrile-Ni(+) complexes as well as the different stationary points of the corresponding potential energy surface (PES) have been theoretically studied by density functional theory (DFT) calculations carried out at B3LYP/6-311G(d,p) level. A cyclic intermediate, in which Ni(+) is bisligated to the cyano and the amino group, plays an important role in the unimolecular reactivity of these ions, because it is the precursor for the observed losses of HCN and H(2)CNH. In all mechanisms associated with the loss of H(2), the metal acts as hydrogen carrier favoring the formation of the H(2) molecule. The estimated bond dissociation energy of aminoacetonitrile-Ni(+) complexes (291 kJ mol(-1)) is larger than those measured for other nitrogen bases such as pyridine or pyrimidine and only slightly smaller than that of adenine.
Collapse
Affiliation(s)
- Al Mokhtar Lamsabhi
- Departamento de Química C-9, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
5
|
Andreazza HJ, Fitzgerald M, Bowie JH. The formation of the stable radicals ˙CH2CN, CH3˙CHCN and ˙CH2CH2CN from the anions−CH2CN, CH3−CHCN and−CH2CH2CN in the gas phase. A joint experimental and theoretical study. Org Biomol Chem 2006; 4:2466-72. [PMID: 16763693 DOI: 10.1039/b602621d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Franck-Condon one-electron oxidation of the stable anions -CH2CN, CH3-CHCN and -CH2CH2CN (in the collision cell of a reverse-sector mass spectrometer) produce the radicals .CH2CN, CH3.CHCN and .CH2CH2CN, which neither rearrange nor decompose during the microsecond duration of the neutralisation-reionisation experiment. Acetonitrile (CH3CN) and propionitrile (CH3CH2CN) are known interstellar molecules and radical abstraction of these could produce energised .CH2CN and CH3.CHCN, which might react with NH2. (a known interstellar radical) on interstellar dust or ice surfaces to form NH2CH2CN and NH2CH(CH3)CN, precursors of the amino acids glycine and alanine.
Collapse
|