1
|
Samgina TY, Vasileva ID, Trebše P, Torkar G, Surin AK, Meng Z, Zubarev RA, Lebedev AT. Tandem Mass Spectrometry de novo Sequencing of the Skin Defense Peptides of the Central Slovenian Agile Frog Rana dalmatina. Molecules 2023; 28:7118. [PMID: 37894596 PMCID: PMC10608968 DOI: 10.3390/molecules28207118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides released on frogs' skin in a stress situation represent their only weapon against micro-organisms and predators. Every species and even population of frog possesses its own peptidome being appropriate for their habitat. Skin peptides are considered potential pharmaceuticals, while the whole peptidome may be treated as a taxonomic characteristic of each particular population. Continuing the studies on frog peptides, here we report the peptidome composition of the Central Slovenian agile frog Rana dalmatina population. The detection and top-down de novo sequencing of the corresponding peptides was conducted exclusively by tandem mass spectrometry without using any chemical derivatization procedures. Collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), electron transfer dissociation (ETD) and combined MS3 method EThcD with stepwise increase of HCD energy were used for that purpose. MS/MS revealed the whole sequence of the detected peptides including differentiation between isomeric Leu/Ile, and the sequence portion hidden in the disulfide cycle. The array of the discovered peptide families (brevinins 1 and 2, melittin-related peptides (MRPs), temporins and bradykinin-related peptides (BRPs)) is quite similar to that of R. temporaria. Since the genome of this frog remains unknown, the obtained results were compared with the recently published transcriptome of R. dalmatina.
Collapse
Affiliation(s)
- Tatiana Yu. Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Irina D. Vasileva
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana Zdravstvena Pot 5, 1000 Ljubljana, Slovenia;
| | - Gregor Torkar
- Department for Biology, Chemistry and Home Economics, University of Ljubljana Faculty of Education, Kardeljeva Ploščad 16, 1000 Ljubljana, Slovenia;
| | - Alexey K. Surin
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow, Russia;
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (Z.M.); (R.A.Z.)
| | - Roman A. Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (Z.M.); (R.A.Z.)
- The National Medical Research Center for Endocrinology, 115478 Moscow, Russia
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Albert T. Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
2
|
Lebedev AT, Vasileva ID, Samgina TY. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. MASS SPECTROMETRY REVIEWS 2022; 41:284-313. [PMID: 33347655 DOI: 10.1002/mas.21678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present review covers available results on the application of FT-MS for the de novo sequencing of natural peptides of various animals: cones, bees, snakes, amphibians, scorpions, and so forth. As these peptides are usually bioactive, the animals efficiently use them as a weapon against microorganisms or higher animals including predators. These peptides represent definite interest as drugs of future generations since the mechanism of their activity is completely different in comparison with that of the modern antibiotics. Utilization of those peptides as antibiotics can eliminate the problem of the bacterial resistance development. Sequence elucidation of these bioactive peptides becomes even more challenging when the species genome is not available and little is known about the protein origin and other properties of those peptides in the study. De novo sequencing may be the only option to obtain sequence information. The benefits of FT-MS for the top-down peptide sequencing, the general approaches of the de novxxo sequencing, the difficult cases involving sequence coverage, isobaric and isomeric amino acids, cyclization of short peptides, the presence of posttranslational modifications will be discussed in the review.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina D Vasileva
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Y Samgina
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Gao Y, Li R, Yang W, Zhou M, Wang L, Ma C, Xi X, Chen T, Shaw C, Wu D. Identification of a new myotropic decapeptide from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. PLoS One 2020; 15:e0243326. [PMID: 33270804 PMCID: PMC7714090 DOI: 10.1371/journal.pone.0243326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/18/2020] [Indexed: 12/03/2022] Open
Abstract
Bradykinin-related peptides (BRPs) family is one of the most significant myotropic peptide families derived from frog skin secretions. Here, a novel BRP callitide was isolated and identified from the red-eyed leaf frog, Agalychnis callidryas, with atypical primary structure FRPAILVRPK-NH2. The mature peptide was cleaved N-terminally at a classic propeptide convertase cleavage site (-KR-) and at the C-terminus an unusual -GKGKGK sequence was removed using the first G residue as an amide donor for the C-terminally-located K residue. Thereafter, the synthetic replicates of callitide were assessed the myotropic activity and showed a significant contraction of balder, with the 0.63 nM EC50 value, more potent than most discovered myotropic peptides. The binding mode was further speculated by molecular docking and stimulation. The result indicated that the C-terminal of callitide might selectively bind to bradykinin receptor B2 (BKRB2). Further investigation of the callitide needs to be done in the future to be exploited as potential future drug leads.
Collapse
Affiliation(s)
- Yitian Gao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Renjie Li
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Wenqing Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
4
|
A Novel Bradykinin-Related Peptide, RVA-Thr 6-BK, from the Skin Secretion of the Hejiang Frog; Ordorrana hejiangensis: Effects of Mammalian Isolated Smooth Muscle. Toxins (Basel) 2019; 11:toxins11070376. [PMID: 31261655 PMCID: PMC6669471 DOI: 10.3390/toxins11070376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023] Open
Abstract
A novel naturally-occurring bradykinin-related peptide (BRP) with an N-terminal extension, named RVA-Thr6-Bradykinin (RVA-Thr6-BK), was here isolated and identified from the cutaneous secretion of Odorrana hejiangensis (O. hejiangensis). Thereafter, in order to evaluate the difference in myotropic actions, a leucine site-substitution variant from Amolops wuyiensis skin secretion, RVA-Leu1, Thr6-BK, was chemically synthesized. Myotropic studies indicated that single-site arginine (R) replacement by leucine (L) at position-4 from the N-terminus, altered the action of RVA-Thr6-BK from an agonist to an antagonist of BK actions on rat ileum smooth muscle. Additionally, both BK N-terminal extended derivatives (RVA-Thr6-BK and RVA-Leu1, Thr6-BK) exerted identical myotropic actions to BK, such as increasing the frequency of contraction, contracting and relaxing the rat uterus, bladder and artery preparations, respectively.
Collapse
|
5
|
Identification and Functional Analysis of Novel Bradykinin-Related Peptides (BRPs) from Skin Secretions of Five Asian Frogs. Protein J 2018; 37:324-332. [PMID: 30008150 DOI: 10.1007/s10930-018-9783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent decades, various types of bioactive substances have been identified from amphibian skin and its secretions. Bradykinin-related peptides (BRPs) are among these compounds that make up the host defence system of amphibians. In the present study, we identified six novel BRPs, amolopkinin-GN1, amolopkinin-RK1, amolopkinin-TR1, amolopkinin-LF1, ranakinin-MS1, and ranakinin-MS2, from five East Asian amphibians, Amolops granulosus, Amolops ricketti, Amolops torrentis, Amolops lifanensis, and Hylarana maosonensis. This is the first report on BRPs in the skin of these species. Physiological assays reveal that these peptides have a contractive effect on the smooth muscle of rat ileum.
Collapse
|
6
|
Xi X, Li B, Chen T, Kwok HF. A review on bradykinin-related peptides isolated from amphibian skin secretion. Toxins (Basel) 2015; 7:951-70. [PMID: 25793726 PMCID: PMC4379535 DOI: 10.3390/toxins7030951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
Abstract
Amphibian skin secretion has great potential for drug discovery and contributes hundreds of bioactive peptides including bradykinin-related peptides (BRPs). More than 50 BRPs have been reported in the last two decades arising from the skin secretion of amphibian species. They belong to the families Ascaphidae (1 species), Bombinatoridae (3 species), Hylidae (9 speices) and Ranidae (25 species). This paper presents the diversity of structural characteristics of BRPs with N-terminal, C-terminal extension and amino acid substitution. The further comparison of cDNA-encoded prepropeptides between the different species and families demonstrated that there are various forms of kininogen precursors to release BRPs and they constitute important evidence in amphibian evolution. The pharmacological activities of isolated BRPs exhibited unclear structure–function relationships, and therefore the scope for drug discovery and development is limited. However, their diversity shows new insights into biotechnological applications and, as a result, comprehensive and systematic studies of the physiological and pharmacological activities of BRPs from amphibian skin secretion are needed in the future.
Collapse
Affiliation(s)
- Xinping Xi
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
- Natural Drug Discovery Group, School of Pharmacy, Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
7
|
König E, Bininda-Emonds ORP, Shaw C. The diversity and evolution of anuran skin peptides. Peptides 2015; 63:96-117. [PMID: 25464160 DOI: 10.1016/j.peptides.2014.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023]
Abstract
Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.
Collapse
Affiliation(s)
- Enrico König
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany.
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - Chris Shaw
- School of Pharmacy, Medical Biology Center, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
8
|
Gene expression analysis by ESTs sequencing of the Brazilian frog Phyllomedusa nordestina skin glands. Toxicon 2012; 61:139-50. [PMID: 23159791 DOI: 10.1016/j.toxicon.2012.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/21/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
Abstract
The subfamily Phyllomedusinae has attracted a great interest of many researchers mainly due to the high diversity of these frog species and plethora of pharmacological activities frequently observed for their skin secretions. Despite of this fact, mainly for new species, limited information is available regarding the molecular composition of these skin secretions and the cellular components involved in their production. Phyllomedusa nordestina is a recently described Brazilian frog species also popularly known as 'tree-frogs'. Aiming at contributing to the biological knowledge of this species, we show here the gene expression profile of this frog skin secretion using a global ESTs analysis of a cDNA library. The marked aspect of this analysis revealed a significant higher transcriptional level of the opioid peptide dermorphins in P. nordestina skin secretion than in Phyllomedusa hypochondrialis, which is its closest related species, belonging both to the same phylogenetic group. Precursors of bioactive peptides as dermaseptins, phylloseptins, tryptophyllins, and bradykinin-like peptideswere also found in this library. Transcripts encoding proteins related to ordinary cellular functions and pathways were also described. Some of them are chiefly involved in the production of the skin secretion. Taken together, the data reported here constitute a contribution to the characterization of the molecular diversity of gene-encoded polypeptides with potential possibility of pharmacological exploitation. The transcriptional composition of the skin secretion may also help to give the necessary support for the definition of P. nordestina as a new species, which actually relies basically on frog morphological characteristics and geographical distribution.
Collapse
|
9
|
A novel frog skin peptide containing function to induce muscle relaxation. Biochimie 2012; 94:2508-13. [PMID: 22771463 DOI: 10.1016/j.biochi.2012.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/27/2012] [Indexed: 11/22/2022]
Abstract
A novel bioactive peptide (polypedarelaxin 1) was identified from the skin secretions of the tree frog, Polypedates pingbianensis. Polypedarelaxin 1 is composed of 21 amino acid residues with a sequence of QGGLLGKVSNLANDALGILPI. Its primary structure was further confirmed by cDNA cloning and mass spectrometry analysis. Polypedarelaxin 1 was found to elicit concentration-dependent relaxation effects on isolated rat ileum. It has no antimicrobial and serine protease inhibitory activities. BLAST search revealed that polypedarelaxin 1 did not show similarity to known proteins or peptides. Especially, polypedarelaxin 1 do not contain conserved structural motifs of other amphibian myotropic peptides, such as bradykinins, bombesins, cholecystokinin (CCK), and tachykinins, indicating that polypedarelaxin 1 belongs to a novel family of amphibian myotropic peptide.
Collapse
|
10
|
Samgina TY, Gorshkov VA, Vorontsov YA, Artemenko KA, Zubarev RA, Lebedev AT. Mass spectrometric study of bradykinin-related peptides (BRPs) from the skin secretion of Russian ranid frogs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:933-940. [PMID: 21416530 DOI: 10.1002/rcm.4948] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
Amphibian skin secretion is known to contain biologically active peptides. Bradykinins and related peptides (BRPs) can be found in these animals, while frogs from the genus Rana are considered to be leaders in the levels and variety of these peptides. A reasonable rationalization of this fact is that bradykinins are efficient defense compounds against predators. Forty-four various BRPs have been identified in the skin secretions of five ranid frog species (R. ridibunda, R. lessonae, R. esculenta, R. temporaria, R. arvalis) from the Zvenigorod region (Moscow district, Russia). Some of these peptides are already known, but the novel ones constitute a significant portion. An interesting group of novel peptides was isolated from R. lessonae. These are bradykinin analogues bearing a tyrosine residue in the 5th or 8th position. [Arg(0), Trp(5), Leu(8)]bradykinin and [Thr(6), Leu(8)]bradykinin that had been isolated from fish and avian species, respectively, were also detected in the frog secretion, supporting the predator defense hypothesis. Furthermore, a novel group of BRPs named 'lessonakinins' was discovered in R. lessonae and R. esculenta. All of them include the [Arg(0), Trp(5), Leu(8)]bradykinin sequence and have some structural resemblance to the precursor of this peptide cloned by Chen and coworkers recently. However, the C-terminal part of the lessonakinins does not match the sequence predicted by Chen, demonstrating possible incompleteness of information obtained by cDNA cloning.
Collapse
Affiliation(s)
- T Yu Samgina
- Organic Chemistry Department, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Azevedo Calderon LD, Silva ADAE, Ciancaglini P, Stábeli RG. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 2010; 40:29-49. [PMID: 20526637 DOI: 10.1007/s00726-010-0622-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator-prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a "treasure store" of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.
Collapse
Affiliation(s)
- Leonardo de Azevedo Calderon
- Centro de Estudos de Biomoléculas Aplicadas a Medicina "Professor Dr. José Roberto Giglio" (CEBio), Núcleo de Saúde (NUSAU), Universidade Federal de Rondônia (UNIR), Porto Velho, RO, 76800-000, Brazil
| | | | | | | |
Collapse
|
12
|
Zhou L, Liu X, Jin P, Li Q. Cloning of the kininogen gene from Lampetra japonica provides insights into its phylogeny in vertebrates. J Genet Genomics 2009; 36:109-15. [PMID: 19232309 DOI: 10.1016/s1673-8527(08)60097-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 11/29/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022]
Abstract
Kininogens, the precursors of bradykinins, ubiquitously exist in vertebrates, including mammals, birds, amphibians, and fishes. To elucidate the phylogeny of kininogen genes in early vertebrates, we cloned the full-length cDNA of kininogen gene from the liver of Lampetra japonica. The open reading frame of this sequence contained 546 bp and encoded 181 amino acids, including a cystatin domain without the canonical binding site for cysteine proteinases and a bradykinin domain. Our results suggested that in lampreys and most of other vertebrates, there might be only one kininogen gene, which was fused by certain sequences during vertebrate evolution and encoded proteins with more functions; however, another special kininogen gene, only encoding the bradykinin domain with multiple copies in some species, arose only in amphibians for adapting themselves to the unique environment. Using reverse transcription PCR, kininogen mRNA was also detected in lamprey gut, kidney, and leukocyte, but absent in lamprey buccal gland. Our findings may provide insights into the phylogeny of kininogen genes as well as other gene families in vertebrates.
Collapse
Affiliation(s)
- Liwei Zhou
- Liaoning Normal University, Dalian, China
| | | | | | | |
Collapse
|
13
|
Escoubas P, Quinton L, Nicholson GM. Venomics: unravelling the complexity of animal venoms with mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:279-295. [PMID: 18302316 DOI: 10.1002/jms.1389] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Animal venoms and toxins are now recognized as major sources of bioactive molecules that may be tomorrow's new drug leads. Their complexity and their potential as drug sources have been demonstrated by application of modern analytical technologies, which have revealed venoms to be vast peptide combinatorial libraries. Structural as well as pharmacological diversity is immense, and mass spectrometry is now one of the major investigative tools for the structural investigation of venom components. Recent advances in its use in the study of venom and toxins are reviewed. The application of mass spectrometry techniques to peptide toxin sequence determination by de novo sequencing is discussed in detail, in the light of the search for novel analgesic drugs. We also present the combined application of LC-MALDI separation with mass fingerprinting and ISD fragmentation for the determination of structural and pharmacological classes of peptides in complex spider venoms. This approach now serves as the basis for the full investigation of complex spider venom proteomes, in combination with cDNA analysis.
Collapse
Affiliation(s)
- P Escoubas
- Université de Nice-Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, 06560 Valbonne, France.
| | | | | |
Collapse
|
14
|
Sin Y, Zhou M, Chen W, Wang L, Chen T, Walker B, Shaw C. Skin bradykinin-related peptides (BRPs) and their biosynthetic precursors (kininogens): comparisons between various taxa of Chinese and North American ranid frogs. Peptides 2008; 29:393-403. [PMID: 18164514 DOI: 10.1016/j.peptides.2007.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/12/2007] [Accepted: 11/12/2007] [Indexed: 12/20/2022]
Abstract
Bradykinins and related peptides (BRPs) occur in the defensive skin secretions of many amphibians. Here we report the structures of BRPs and their corresponding biosynthetic precursor cDNAs from the Chinese brown frog, Rana chensinensis, and the North American leopard frog, Lithobates pipiens. R. chensinensis skin contained four transcripts each encoding a different kininogen whose organizations and spectrum of encoded BRPs were similar to those reported for the pickerel frog, Lithobates palustris. In contrast, from L. pipiens, a single skin kininogen was cloned whose structural organization and spectrum of mature BRPs were similar to those reported for the Chinese piebald odorous frog, Huia schmackeri. These data also implied that the endogenous precursor processing proteases in each species pair have identical site-directed specificities, which in part may be dictated by the primary structures of encoded BRPs. Thus the spectra of skin BRPs and the organization of their biosynthetic precursors are not consistent with recent taxonomy. The natural selective pressures that mould the primary structures of amphibian skin secretion peptides are thought to be related to the spectrum of predators encountered within their habitats. Thus similarities and differences in skin bradykinins may be reflective of predator spectra rather than indicative of species relatedness.
Collapse
Affiliation(s)
- YeeTing Sin
- Molecular Therapeutics Research, School of Pharmacy, Queen's University, Belfast, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhou L, Li-Ling J, Huang H, Ma F, Li Q. Phylogenetic analysis of vertebrate kininogen genes. Genomics 2007; 91:129-41. [PMID: 18096361 DOI: 10.1016/j.ygeno.2007.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 11/26/2022]
Abstract
Kininogens, the precursors of bradykinins, vary extremely in both structure and function among different taxa of animals, in particular between mammals and amphibians. This includes even the most conserved bradykinin domain in terms of biosynthesis mode and structure. To elucidate the evolutionary dynamics of kininogen genes, we have identified 19 novel amino acid sequences from EST and genomic databases (for mammals, birds, and fishes) and explored their phylogenetic relationships using combined amino acid sequence and gene structure as markers. Our results show that there were initially two paralogous kininogen genes in vertebrates. During their evolution, the original gene was saved with frequent multiplication in amphibians, but lost in fishes, birds, and mammals, while the novel gene was saved with multiple functions in fishes, birds, and mammals, but became a pseudogene in amphibians. We also propose that the defense mechanism against specific predators in amphibian skin secretions has been bradykinin receptor dependent. Our findings may provide a foundation for identification and structural, functional, and evolutionary analyses of more kininogen genes and other gene families.
Collapse
Affiliation(s)
- Liwei Zhou
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | |
Collapse
|
16
|
Thompson AH, Bjourson AJ, Orr DF, Shaw C, McClean S. Amphibian skin secretomics: application of parallel quadrupole time-of-flight mass spectrometry and peptide precursor cDNA cloning to rapidly characterize the skin secretory peptidome of Phyllomedusa hypochondrialis azurea: discovery of a novel peptide family, the hyposins. J Proteome Res 2007; 6:3604-13. [PMID: 17696382 DOI: 10.1021/pr0702666] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports the variety of peptides present in the skin secretory peptidome of Phyllomedusa hypochondrialis azurea. Peptide structures, along with post-translational modifications, were elucidated by QTOF MS/MS analysis, cDNA sequencing, or a combination of both. Twenty-two peptides, including 19 novel structures, were identified from six different structural classes, including tryptophyllins, dermorphins, and a novel group of peptides termed hyposins. The study demonstrates the power of this combined approach to mine the rich peptidome compliment of the amphibian defensive skin secretome.
Collapse
Affiliation(s)
- Alan Hunter Thompson
- Institute of Biomedical Sciences, University of Ulster, Coleraine, Co Londonderry BT52 1SA, UK
| | | | | | | | | |
Collapse
|
17
|
McCrudden CM, Zhou M, Chen T, O'Rourke M, Walker B, Hirst D, Shaw C. The complex array of bradykinin-related peptides (BRPs) in the peptidome of pickerel frog (Rana palustris) skin secretion is the product of transcriptional economy. Peptides 2007; 28:1275-81. [PMID: 17459523 DOI: 10.1016/j.peptides.2007.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/26/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.
Collapse
Affiliation(s)
- Cian Michael McCrudden
- Molecular Therapeutics Research, School of Pharmacy, Medical Biology Center, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:689-700. [PMID: 17474104 DOI: 10.1002/jms.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|