1
|
Noordally ZB, Hindle MM, Martin SF, Seaton DD, Simpson TI, Le Bihan T, Millar AJ. A phospho-dawn of protein modification anticipates light onset in the picoeukaryote Ostreococcus tauri. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5514-5531. [PMID: 37481465 PMCID: PMC10540734 DOI: 10.1093/jxb/erad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
2
|
Surviving Starvation: Proteomic and Lipidomic Profiling of Nutrient Deprivation in the Smallest Known Free-Living Eukaryote. Metabolites 2020; 10:metabo10070273. [PMID: 32635273 PMCID: PMC7407893 DOI: 10.3390/metabo10070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Marine phytoplankton, comprising cyanobacteria, micro- and pico-algae are key to photosynthesis, oxygen production and carbon assimilation on Earth. The unicellular green picoalga Ostreococcus tauri holds a key position at the base of the green lineage of plants, which makes it an interesting model organism. O. tauri has adapted to survive in low levels of nitrogen and phosphorus in the open ocean and also during rapid changes in the levels of these nutrients in coastal waters. In this study, we have employed untargeted proteomic and lipidomic strategies to investigate the molecular responses of O. tauri to low-nitrogen and low-phosphorus environments. In the absence of external nitrogen, there was an elevation in the expression of ammonia and urea transporter proteins together with an accumulation of triglycerides. In phosphate-limiting conditions, the expression levels of phosphokinases and phosphate transporters were increased, indicating an attempt to maximise scavenging opportunities as opposed to energy conservation conditions. The production of betaine lipids was also elevated, highlighting a shift away from phospholipid metabolism. This finding was supported by the putative identification of betaine synthase in O. tauri. This work offers additional perspectives on the complex strategies that underpin the adaptive processes of the smallest known free-living eukaryote to alterations in environmental conditions.
Collapse
|
3
|
Capeness MJ, Imrie L, Mühlbauer LF, Le Bihan T, Horsfall LE. Shotgun proteomic analysis of nanoparticle-synthesizing Desulfovibrio alaskensis in response to platinum and palladium. MICROBIOLOGY-SGM 2019; 165:1282-1294. [PMID: 31361216 PMCID: PMC7376266 DOI: 10.1099/mic.0.000840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum and palladium are much sought-after metals of critical global importance in terms of abundance and availability. At the nano-scale these metals are of even higher value due to their catalytic abilities for industrial applications. Desulfovibrio alaskensis is able to capture ionic forms of both of these metals, reduce them and synthesize elemental nanoparticles. Despite this ability, very little is known about the biological pathways involved in the formation of these nanoparticles. Proteomic analysis of D. alaskensis in response to platinum and palladium has highlighted those proteins involved in both the reductive pathways and the wider stress-response system. A core set of 13 proteins was found in both treatments and consisted of proteins involved in metal transport and reduction. There were also seven proteins that were specific to either platinum or palladium. Overexpression of one of these platinum-specific genes, a NiFe hydrogenase small subunit (Dde_2137), resulted in the formation of larger nanoparticles. This study improves our understanding of the pathways involved in the metal resistance mechanism of Desulfovibrio and is informative regarding how we can tailor the bacterium for nanoparticle production, enhancing its application as a bioremediation tool and as a way to capture contaminant metals from the environment.
Collapse
Affiliation(s)
- Michael J Capeness
- Institute of Quantitative Biology, Biochemistry and Biotechnology/CSEC, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Lisa Imrie
- EdinOmics, SynthSys, CH Waddington Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Lukas F Mühlbauer
- Institute of Quantitative Biology, Biochemistry and Biotechnology/CSEC, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Thierry Le Bihan
- Currently: Rapid Novor, Inc., Kitchener, Ontario N2G 4P3, Canada.,EdinOmics, SynthSys, CH Waddington Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology/CSEC, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
4
|
Roy M, Sorokina O, Skene N, Simonnet C, Mazzo F, Zwart R, Sher E, Smith C, Armstrong JD, Grant SGN. Proteomic analysis of postsynaptic proteins in regions of the human neocortex. Nat Neurosci 2017; 21:130-138. [DOI: 10.1038/s41593-017-0025-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022]
|
5
|
Lockman KA, Htun V, Sinha R, Treskes P, Nelson LJ, Martin SF, Rogers SM, Le Bihan T, Hayes PC, Plevris JN. Proteomic profiling of cellular steatosis with concomitant oxidative stress in vitro. Lipids Health Dis 2016; 15:114. [PMID: 27368608 PMCID: PMC4930558 DOI: 10.1186/s12944-016-0283-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022] Open
Abstract
Background Nutrient excess underpins the development of nonalcoholic fatty liver disease (NAFLD). The ensuing metabolic derangement is characterised by increased cellular respiration, oxidative stress and mitochondrial impairment. We have previously recapitulated these events in an in vitro cellular steatosis model. Here, we examined the distinct patterns of protein expression involved using a proteomics approach. Methods Human hepatoblastoma C3A cells were treated with a combination of energy substrates; lactate (L), pyruvate (P), octanoate (O) and ammonia (N). Proteins extracts were trypsinized and analyzed on a capillary HPLC OrbitrapXL mass spectrometer. Proteins were quantified using a label-free intensity based approach. Functional enrichment analysis was performed using ToppCluster via Gene Ontology (GO) database. Results Of the 1327 proteins identified, 104 were differentially expressed between LPON and untreated cells (defined as: ≥2 peptides; fold change ≥1.5; p-value <0.05). Seventy of these were upregulated with LPON. Functional enrichment analysis revealed enhanced protein biosynthesis accompanied by downregulation of histones H2A type 1-A, H1.2, H1.5 and H1.0I in LPON cells. Lipid binding annotations were also enriched as well as proteins involved in cholesterol synthesis, uptake and efflux. Increased expression of aldo-keto reductase family 1, member C1 and C3 suggests enhanced sterol metabolism and increased ROS-mediated lipid peroxidation. Conclusions The surge of energy substrates diverts free fatty acid metabolism towards pathways that can mitigate lipotoxicity. The histones depletion may represent an adaptation to increased protein synthesis. However, this can also expose DNA to oxidative stress thus should be explored further in the context of NAFLD progression.
Collapse
Affiliation(s)
- Khalida Ann Lockman
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Varanand Htun
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Rohit Sinha
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Philipp Treskes
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Leonard J Nelson
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - Sarah F Martin
- Kinetic Parameter Facility, SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sophie M Rogers
- Kinetic Parameter Facility, SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Thierry Le Bihan
- Kinetic Parameter Facility, SynthSys - Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Peter C Hayes
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK
| | - John N Plevris
- Hepatology Laboratory, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland, UK.
| |
Collapse
|
6
|
Bryce CC, Le Bihan T, Martin SF, Harrison JP, Bush T, Spears B, Moore A, Leys N, Byloos B, Cockell CS. Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environ Microbiol 2015; 18:1110-21. [DOI: 10.1111/1462-2920.13093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Casey C. Bryce
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
| | - Thierry Le Bihan
- Centre for Synthetic and Systems Biology; Institute of Structural and Molecular Biology; University of Edinburgh; Edinburgh UK
| | - Sarah F. Martin
- Centre for Synthetic and Systems Biology; Institute of Structural and Molecular Biology; University of Edinburgh; Edinburgh UK
| | - Jesse P. Harrison
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
- Division of Microbial Ecology; Department of Microbiology and Ecosystem Science; University of Vienna; Austria
| | - Timothy Bush
- Institute for Condensed Matter and Complex Systems; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
- Institute for Biodiversity and Ecosystem Dynamics (IBED); University of Amsterdam; The Netherlands
| | - Bryan Spears
- Centre for Ecology and Hydrology, Bush Estate; Penicuik Edinburgh UK
| | - Alanna Moore
- Centre for Ecology and Hydrology, Bush Estate; Penicuik Edinburgh UK
| | - Natalie Leys
- Microbiology Unit; Belgian Nuclear Research Centre; SCK●CEN Mol Belgium
| | - Bo Byloos
- Microbiology Unit; Belgian Nuclear Research Centre; SCK●CEN Mol Belgium
- Laboratory of Microbial Ecology and Technology; University of Ghent; Ghent Belgium
| | - Charles S. Cockell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh UK
| |
Collapse
|
7
|
Yeung ENW, Treskes P, Martin SF, Manning JR, Dunbar DR, Rogers SM, Le Bihan T, Lockman KA, Morley SD, Hayes PC, Nelson LJ, Plevris JN. Fibrinogen production is enhanced in an in-vitro model of non-alcoholic fatty liver disease: an isolated risk factor for cardiovascular events? Lipids Health Dis 2015; 14:86. [PMID: 26256740 PMCID: PMC4529985 DOI: 10.1186/s12944-015-0069-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/29/2015] [Indexed: 12/25/2022] Open
Abstract
Background Cardiovascular disease (CVD) remains the major cause of excess mortality in patients with non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the individual contribution of NAFLD to CVD risk factors in the absence of pathogenic influences from other comorbidities often found in NAFLD patients, by using an established in-vitro model of hepatic steatosis. Methods Histopathological events in non-alcoholic fatty liver disease were recapitulated by focused metabolic nutrient overload of hepatoblastoma C3A cells, using oleate-treated-cells and untreated controls for comparison. Microarray and proteomic data from cell culture experiments were integrated into a custom-built systems biology database and proteogenomics analysis performed. Candidate genes with significant dysregulation and concomitant changes in protein abundance were identified and STRING association and enrichment analysis performed to identify putative pathogenic pathways. Results The search strategy yielded 3 candidate genes that were specifically and significantly up-regulated in nutrient-overloaded cells compared to untreated controls: fibrinogen alpha chain (2.2 fold), fibrinogen beta chain (2.3 fold) and fibrinogen gamma chain (2.1 fold) (all rank products pfp <0.05). Fibrinogen alpha and gamma chain also demonstrated significant concomitant increases in protein abundance (3.8-fold and 2.0-fold, respectively, p <0.05). Conclusions In-vitro modelling of NAFLD and reactive oxygen species formation in nutrient overloaded C3A cells, in the absence of pathogenic influences from other comorbidities, suggests that NAFLD is an isolated determinant of CVD. Nutrient overload-induced up-regulation of all three fibrinogen component subunits of the coagulation cascade provides a possible mechanism to explain the excess CVD mortality observed in NAFLD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N W Yeung
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Philipp Treskes
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Sarah F Martin
- Kinetic Parameter Facility, SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, C.H. Waddington Building, The Kings Buildings, Edinburgh, EH9 3JD, UK.
| | - Jonathan R Manning
- Bioinformatics Team, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Donald R Dunbar
- Bioinformatics Team, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Sophie M Rogers
- Kinetic Parameter Facility, SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, C.H. Waddington Building, The Kings Buildings, Edinburgh, EH9 3JD, UK.
| | - Thierry Le Bihan
- Kinetic Parameter Facility, SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, C.H. Waddington Building, The Kings Buildings, Edinburgh, EH9 3JD, UK.
| | - K Ann Lockman
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Steven D Morley
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Peter C Hayes
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - Leonard J Nelson
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | - John N Plevris
- Hepatology Laboratory, Division of Health Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
8
|
Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Vanoosthuyse V, Legros P, van der Sar SJA, Yvert G, Toda K, Le Bihan T, Watanabe Y, Hardwick K, Bernard P. CPF-associated phosphatase activity opposes condensin-mediated chromosome condensation. PLoS Genet 2014; 10:e1004415. [PMID: 24945319 PMCID: PMC4063703 DOI: 10.1371/journal.pgen.1004415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/16/2014] [Indexed: 12/03/2022] Open
Abstract
Functional links connecting gene transcription and condensin-mediated chromosome condensation have been established in species ranging from prokaryotes to vertebrates. However, the exact nature of these links remains misunderstood. Here we show in fission yeast that the 3′ end RNA processing factor Swd2.2, a component of the Cleavage and Polyadenylation Factor (CPF), is a negative regulator of condensin-mediated chromosome condensation. Lack of Swd2.2 does not affect the assembly of the CPF but reduces its association with chromatin. This causes only limited, context-dependent effects on gene expression and transcription termination. However, CPF-associated Swd2.2 is required for the association of Protein Phosphatase 1 PP1Dis2 with chromatin, through an interaction with Ppn1, a protein that we identify as the fission yeast homologue of vertebrate PNUTS. We demonstrate that Swd2.2, Ppn1 and PP1Dis2 form an independent module within the CPF, which provides an essential function in the absence of the CPF-associated Ssu72 phosphatase. We show that Ppn1 and Ssu72, like Swd2.2, are also negative regulators of condensin-mediated chromosome condensation. We conclude that Swd2.2 opposes condensin-mediated chromosome condensation by facilitating the function of the two CPF-associated phosphatases PP1 and Ssu72. Failure to properly condense chromosomes prior to their segregation in mitosis can lead to genome instability. The evolutionary-conserved condensin complex is key to the condensation process but the molecular mechanisms underlying its localization pattern on chromosomes remain unclear. Previous observations showed that the localization of condensin is intimately linked to regions of high transcription, although, somewhat paradoxically, its association with chromatin is disrupted by a processive polymerase activity. Here we identify several RNA processing factors as negative regulators of condensin in fission yeast. Two of these factors associate with PP1 phosphatase as an independent entity within the Cleavage and Polyadenylation Factor (CPF), a complex key for 3′ end RNA processing. Lack of this module induces only minor and context-dependent effects on gene expression. Our data suggest that this module helps maintaining the proper level of phosphatase activity within the CPF and thereby opposes the function of condensin in mitotic chromosome condensation.
Collapse
Affiliation(s)
- Vincent Vanoosthuyse
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Pénélope Legros
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| | | | - Gaël Yvert
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| | - Kenji Toda
- Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Thierry Le Bihan
- SynthSys Edinburgh, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yoshinori Watanabe
- Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kevin Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Bernard
- CNRS, UMR5239, LBMC; Ecole Normale Supérieure de Lyon; Université Lyon 01, Lyon, France
| |
Collapse
|
10
|
Deighton RF, Le Bihan T, Martin SF, Barrios-Llerena ME, Gerth AMJ, Kerr LE, McCulloch J, Whittle IR. The proteomic response in glioblastoma in young patients. J Neurooncol 2014; 119:79-89. [PMID: 24838487 PMCID: PMC4129242 DOI: 10.1007/s11060-014-1474-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 05/04/2014] [Indexed: 01/06/2023]
Abstract
Increasing age is an important prognostic variable in glioblastoma (GBM). We have defined the proteomic response in GBM samples from 7 young patients (mean age 36 years) compared to peritumoural-control samples from 10 young patients (mean age 32 years). 2-Dimensional-gel-electrophoresis, image analysis, and protein identification (LC/MS) were performed. 68 proteins were significantly altered in young GBM samples with 29 proteins upregulated and 39 proteins downregulated. Over 50 proteins are described as altered in GBM for the first time. In a parallel analysis in old GBM (mean age 67 years), an excellent correlation could be demonstrated between the proteomic profile in young GBM and that in old GBM patients (r2 = 0.95) with only 5 proteins altered significantly (p < 0.01). The proteomic response in young GBM patients highlighted alterations in protein–protein interactions in the immunoproteosome, NFkB signalling, and mitochondrial function and the same systems participated in the responses in old GBM patients.
Collapse
Affiliation(s)
- Ruth F Deighton
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, EH4 2XU, UK,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Interactions among mitochondrial proteins altered in glioblastoma. J Neurooncol 2014; 118:247-256. [PMID: 24728830 PMCID: PMC4048470 DOI: 10.1007/s11060-014-1430-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/29/2014] [Indexed: 11/04/2022]
Abstract
Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change ≥2) and significantly altered in GBM (p ≤ 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology.
Collapse
|
12
|
Searcy JL, Le Bihan T, Salvadores N, McCulloch J, Horsburgh K. Impact of age on the cerebrovascular proteomes of wild-type and Tg-SwDI mice. PLoS One 2014; 9:e89970. [PMID: 24587158 PMCID: PMC3935958 DOI: 10.1371/journal.pone.0089970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
The structural integrity of cerebral vessels is compromised during ageing. Abnormal amyloid (Aβ) deposition in the vasculature can accelerate age-related pathologies. The cerebrovascular response associated with ageing and microvascular Aβ deposition was defined using quantitative label-free shotgun proteomic analysis. Over 650 proteins were quantified in vessel-enriched fractions from the brains of 3 and 9 month-old wild-type (WT) and Tg-SwDI mice. Sixty-five proteins were significantly increased in older WT animals and included several basement membrane proteins (nidogen-1, basement membrane-specific heparan sulfate proteoglycan core protein, laminin subunit gamma-1 precursor and collagen alpha-2(IV) chain preproprotein). Twenty-four proteins were increased and twenty-one decreased in older Tg-SwDI mice. Of these, increases in Apolipoprotein E (APOE) and high temperature requirement serine protease-1 (HTRA1) and decreases in spliceosome and RNA-binding proteins were the most prominent. Only six shared proteins were altered in both 9-month old WT and Tg-SwDI animals. The age-related proteomic response in the cerebrovasculature was distinctly different in the presence of microvascular Aβ deposition. Proteins found differentially expressed within the WT and Tg-SwDI animals give greater insight to the mechanisms behind age-related cerebrovascular dysfunction and pathologies and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- James L Searcy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys - Synthetic & Systems Biology, University of Edinburgh, Edinburgh, United Kingdom ; Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalia Salvadores
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - James McCulloch
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom ; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom ; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Villegas SN, Rothová M, Barrios-Llerena ME, Pulina M, Hadjantonakis AK, Le Bihan T, Astrof S, Brickman JM. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix. eLife 2013; 2:e00806. [PMID: 24368729 PMCID: PMC3871052 DOI: 10.7554/elife.00806] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key to specifying anterior endodermal identity in vivo and in vitro. Thus, localized PI3K activity affects ECM composition and ECM in turn patterns the endoderm. DOI:http://dx.doi.org/10.7554/eLife.00806.001 From conception to birth, a single fertilised egg will multiply into trillions of cells, with each cell becoming one of the 200 or so different types of cell that are found in the human body. The development of an embryo is complex and dynamic, with cells giving up their ability to become any cell type and committing to becoming a specific cell type within a given tissue. At the same time, different groups of cells migrate to the appropriate locations within the developing embryo. Although it is challenging to decipher the roles of the individual signalling pathways that control an embryo’s development, several important components have been found. Fibroblast growth factor (FGF) is a protein that regulates the formation of the endoderm: this is the innermost of the three layers of cells that form in the early embryo, and it gives rise to internal organs such as the gut, liver and pancreas. As well as ‘telling’ cells to become the front part, or anterior, of the endoderm, FGF also controls the migration of these cells within the embryo. However, uncoupling these two roles has been a major challenge, and the molecular mechanisms behind them are unclear. Now, Villegas et al. have discovered that FGF activates a signalling cascade involving two enzymes called PI3K and Akt1. In lab-grown embryonic stem cells—cells that can be coaxed to become any of the cell types formed during development—this signalling cascade is essential for FGF to trigger differentiation of the cell types found in the anterior endoderm. The PI3K/Akt1 signalling cascade achieves this by reducing the level of a protein called fibronectin in the ‘extracellular matrix’ that surrounds the cells. This low level of fibronectin will in turn induce cells to stick together in an organized layer; and this rearrangement of cell-cell and cell-matrix interactions appears linked to triggering the differentiation of anterior endoderm cell types. Villegas et al. showed that the PI3K/Akt1 pathway was also essential for endoderm formation in living mouse embryos. As a normal embryo develops, the anterior endoderm cells move into a ‘groove’ at the front the embryo, where the level of fibronectin is lower than it is at the posterior end of the embryo. These findings highlight the importance of the extracellular matrix in the regulation of embryonic development, and should assist in the effort to turn lab-grown stem cells into the useful cell types found in internal organs. DOI:http://dx.doi.org/10.7554/eLife.00806.002
Collapse
Affiliation(s)
- S Nahuel Villegas
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Le Bihan T, Rayner J, Roy MM, Spagnolo L. Photobacterium profundum under pressure: a MS-based label-free quantitative proteomics study. PLoS One 2013; 8:e60897. [PMID: 23741291 PMCID: PMC3669370 DOI: 10.1371/journal.pone.0060897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Photobacterium profundum SS9 is a Gram-negative bacterium, originally collected from the Sulu Sea. Its genome consists of two chromosomes and a 80 kb plasmid. Although it can grow under a wide range of pressures, P. profundum grows optimally at 28 MPa and 15°C. Its ability to grow at atmospheric pressure allows for both easy genetic manipulation and culture, making it a model organism to study piezophily. Here, we report a shotgun proteomic analysis of P. profundum grown at atmospheric compared to high pressure using label-free quantitation and mass spectrometry analysis. We have identified differentially expressed proteins involved in high pressure adaptation, which have been previously reported using other methods. Proteins involved in key metabolic pathways were also identified as being differentially expressed. Proteins involved in the glycolysis/gluconeogenesis pathway were up-regulated at high pressure. Conversely, several proteins involved in the oxidative phosphorylation pathway were up-regulated at atmospheric pressure. Some of the proteins that were differentially identified are regulated directly in response to the physical impact of pressure. The expression of some proteins involved in nutrient transport or assimilation, are likely to be directly regulated by pressure. In a natural environment, different hydrostatic pressures represent distinct ecosystems with their own particular nutrient limitations and abundances. However, the only variable considered in this study was atmospheric pressure.
Collapse
Affiliation(s)
- Thierry Le Bihan
- SynthSys, The University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (TLB); (LS)
| | - Joe Rayner
- SynthSys, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcia M. Roy
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Spagnolo
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (TLB); (LS)
| |
Collapse
|
15
|
James R, Searcy JL, Le Bihan T, Martin SF, Gliddon CM, Povey J, Deighton RF, Kerr LE, McCulloch J, Horsburgh K. Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge. J Cereb Blood Flow Metab 2012; 32:164-76. [PMID: 21878944 PMCID: PMC3323298 DOI: 10.1038/jcbfm.2011.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein E (APOE)-ɛ4 is associated with a deleterious outcome after ischemic brain injury, which may involve abnormal regulation of mitochondrial function. We have assessed the mitochondrial proteomic response of APOE-ɛ3 and APOE-ɛ4 transgenic mice to transient global ischemic injury in the hippocampus. A genotype-dependent increase in ApoE levels in mitochondria was observed after ischemia, with APOE-ɛ4 mice showing significantly greater increases than APOE-ɛ3 mice. Quantitative analysis of the mitochondria-enriched fractions was performed using liquid-chromatography mass spectrometry coupled to label-free analysis. Of the 1,067 identified proteins, 274 were mitochondria associated. Mitochondrial protein expression was significantly different between genotypes under basal conditions as well as in response to global ischemia. A total of 12 mitochondrial proteins (including respiratory chain proteins NDUFA11, NDUFS3, NDUF5B, ATP5J, as well as ETFA, CYB5B, ATP6V1A, HSPA1B, OXR1, GLUL, IARS2, and PHYHIPL) were significantly altered with respect to genotype, global ischemia, or their interaction (P<0.01). A compelling interactome, created using proteins found to be significantly modulated by global ischemia (P<0.05), involved proteins that regulate energy production and oxidative stress. Thus, APOE genotype has a differential effect on the mitochondrial protein expression in the absence and presence of an injury, which may underlie the differing genotype susceptibility.
Collapse
Affiliation(s)
- Rachel James
- Centre for Cognitive Aging and Cognitive Epidemiology, Centre for Cognitive and Neural Systems, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T. Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. J Proteome Res 2011; 11:476-86. [PMID: 22077659 DOI: 10.1021/pr2009302] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.
Collapse
Affiliation(s)
- Sarah F Martin
- Centre for Systems Biology at Edinburgh, University of Edinburgh, CH Waddington Building, The Kings Buildings, Mayfield Road, EH9 3JD, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Barrios-Llerena ME, Pritchard JC, Kerr LE, Le Bihan T. The use of a novel quantitation strategy based on Reductive Isotopic Di-Ethylation (RIDE) to evaluate the effect of glufosinate on the unicellular algae Ostreococcus tauri. J Proteomics 2011; 74:2798-809. [DOI: 10.1016/j.jprot.2011.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/19/2011] [Indexed: 11/26/2022]
|
18
|
Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 2011; 74:2060-70. [DOI: 10.1016/j.jprot.2011.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 01/02/2023]
|