1
|
Pei J, Hsu CC, Zhang R, Wang Y, Yu K, Huang G. Unexpected Reduction of Iminoquinone and Quinone Derivatives in Positive Electrospray Ionization Mass Spectrometry and Possible Mechanism Exploration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2454-2461. [PMID: 28786093 DOI: 10.1007/s13361-017-1770-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Unexpected reduction of iminoquinone (IQ) and quinone derivatives was first reported during positive electrospray ionization mass spectrometry. Upon increasing spray voltage, the intensities of IQ and quinone derivatives decreased drastically, accompanying the increase of the intensities of the reduction products, amodiaquine (AQ) and phenol derivatives. To gain more insight into the mechanism of such reduction, we explored the experimental factors that are influential to corona discharge (CD). The results show that experimental parameters that favor severe CD, including metal spray emitter, using water as spray solvent, sheath gas with low dielectric strength (e.g., nitrogen), and shorter spray tip-to-mass spectrometer inlet distance, facilitated the reduction of IQ and quinone derivatives, implying that the reduction should be closely related to CD in the gas phase. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jiying Pei
- School of Marine Sciences, Guangxi University, Nanning, 530004, People's Republic of China
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ruijie Zhang
- School of Marine Sciences, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning, 530004, People's Republic of China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guangming Huang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China.
| |
Collapse
|
2
|
Tang C, Tan J, Jin J, Xi S, Li H, Xie Q, Peng X. Observation and confirmation of oxidation reactions occurring on ultra-high-performance liquid chromatography columns. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1863-1873. [PMID: 26411507 DOI: 10.1002/rcm.7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/16/2015] [Accepted: 07/27/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Ultra-high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC/ESI-MS) has been frequently used for chemical analysis. A redox reaction in the ESI source has been observed during the ionization process. However, it is still unclear whether this redox reaction can take place on UPLC columns. METHODS In this study, the oxidation reactions potentially occurring on UPLC columns were investigated using polyphenols including baicalin, baicalein, propyl gallate (PG), quercetin-3-rhamnoside (QR), rutin, naringin and 2,3,5,4'-tetrahydroxystilbene-2-Ο-β-D-glucoside (THS-G) as model compounds. The on-column oxidation reaction was ascertained by post-column infusion of antioxidants such as ammonium sulfide ((NH4)2S). The oxidized products were reduced to their parent forms in the ESI source. This on-column oxidation reaction was further confirmed by means of post-column infusion of baicalin solution. RESULTS On-column oxidation reactions were observed and confirmed for baicalin, baicalein, PG, rutin, and QR. The exact reaction site was located at the outlet frits of the UPLC columns. (NH4)2S was proved to be the most suitable reducing agent among the tested antioxidants for eliminating negative effects caused by on-column oxidation reaction. It was subsequently proposed to be an efficient additive to suppress oxidation reactions in the ESI source. CONCLUSIONS Oxidation reactions can take place at the outlet frits of UPLC columns. Ascertaining on-column oxidation reactions and consequently eliminating relevant negative effects are of great interest for determination of oxidation-sensitive compounds such as polyphenols.
Collapse
Affiliation(s)
- Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510110, China
| | - Jiabin Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaofeng Xi
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510110, China
| | - Huiyong Li
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 510110, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
3
|
Oberacher H, Pitterl F, Erb R, Plattner S. Mass spectrometric methods for monitoring redox processes in electrochemical cells. MASS SPECTROMETRY REVIEWS 2015; 34:64-92. [PMID: 24338642 PMCID: PMC4286209 DOI: 10.1002/mas.21409] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/24/2013] [Accepted: 08/12/2013] [Indexed: 06/03/2023]
Abstract
Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| | - Sabine Plattner
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical UniversityInnsbruck, Austria
| |
Collapse
|
4
|
Sojo LE, Chahal N, Keller BO. Oxidation of catechols during positive ion electrospray mass spectrometric analysis: evidence for in-source oxidative dimerization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2181-2190. [PMID: 25178722 DOI: 10.1002/rcm.7011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Catechols are an important class of analytes occurring in many natural and synthetic products. Electrospray ionization in negative mode is the preferred way of ion generation for these compounds; however, studies in positive ion mode can reveal their potential for in-source oxidation and further structural changes, some of which may also occur in the solution phase. Therefore in-source oxidation can provide a forward look into the potential for solution oxidation. METHODS 1:1 Acetonitrile/water solutions of catechol (Cat), 4,5-dichlorocatechol (4,5-DCC), 3,4-dichlorocatechol (3,4-DCC) and tetrachlorocatechol (TCC) were analyzed by positive ion ultrahigh-performance liquid chromatography (UHPLC/ESI-MS) and UHPLC/ESI-MS/MS under various emitter voltages to assess their liability towards in-source oxidation. Structural information for in-source generated compounds was obtained through the use of product ion scans. RESULTS Using catechols as probe compounds, we have demonstrated that under the conditions used in many analytical laboratories in-source oxidation can severely affect the sensitivity and response functions of an analyte. Under standard UHPLC conditions (300 μL/min flow rate), Cat, 3,4-DCC, 4,5-DCC and TCC can undergo in-source oxidation. The extent of oxidation is dependent either on the instrument or on the characteristics of the emitter. This is evident by a change in the isotopic pattern of these compounds and the generation of ions at lower m/z values due to a loss of 1 and/or 2 hydrogens and electrons. In the case of catechol, the formation of a dimer resulting from in-source oxidation reactions was observed. This dimer has the same fragmentation pattern as the dimer generated by oxidation in the solution phase. CONCLUSIONS The present work demonstrates the potential of positive ion ESI for oxidizing electroactive compounds during regular analytical operation using commercially available mass spectrometers. Using Cat and some of its chlorinated analogues as probe compounds, we have demonstrated that under the conditions used in many analytical laboratories in-source oxidation and dimerization can and does take place.
Collapse
Affiliation(s)
- Luis E Sojo
- Compound Properties Group, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada, V5G 4W8; Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | | | |
Collapse
|
5
|
Plattner S, Erb R, Chervet JP, Oberacher H. Ascorbic acid for homogenous redox buffering in electrospray ionization-mass spectrometry. Anal Bioanal Chem 2012; 404:1571-9. [PMID: 22772139 PMCID: PMC3426670 DOI: 10.1007/s00216-012-6196-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
Electrospray ionization (ESI) involves the dispersion of a liquid containing analytes of interest into a fine aerosol by applying a high potential difference to the sample solution with respect to a counter electrode. Thus, from the electrochemical point of view, the ESI source represents a two-electrode controlled-current electrochemical flow cell. The electroactive compounds part of the solvent sprayed may be altered by occurring electrolysis (oxidation in positive ion mode and reduction in negative ion mode). These reactions can be troublesome in the context of unknown identification and quantification. In the search for a simple, inexpensive, and efficient way to suppress electrochemical oxidation in positive ESI, the usability of ascorbic acid, hydroquinone, and glutathione for homogenous redox buffering was tested. Performance of the antioxidants was assessed by analyzing pharmaceutical compounds covering a broad range of functional groups prone to oxidation. Different emitter setups were applied for continuous infusion, flow injection, and liquid chromatography/mass spectrometry experiments. Best performance was obtained with ascorbic acid. In comparison to hydroquinone and glutathione, ascorbic acid offered superior antioxidant activity, a relatively inert oxidation product, and hardly any negative effect on the ionization efficiency of analytes. Furthermore, ascorbic acid suppressed the formation of sodiated forms and was able to induce charge state reduction. Only in the very special case of analyzing a compound isobaric to ascorbic acid, interference with the low-abundant [ascorbic acid+H](+) signal may become a point of attention.
Collapse
Affiliation(s)
- Sabine Plattner
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
6
|
Chai Y, Sun H, Wan J, Pan Y, Sun C. Hydride abstraction in positive-ion electrospray interface: oxidation of 1,4-dihydropyridines in electrospray ionization mass spectrometry. Analyst 2011; 136:4667-9. [DOI: 10.1039/c1an15129k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|