1
|
Jing X, Edwards KC, Vincent JB, Cassady CJ. The use of chromium(III) complexes to enhance peptide protonation by electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1198-1206. [PMID: 30281192 DOI: 10.1002/jms.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/27/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The addition of trivalent chromium, Cr(III), reagents to peptide solutions can increase the intensity of doubly protonated peptides, [M + 2H]2+ , through electrospray ionization (ESI). Three model heptapeptides were studied: neutral (AAAAAAA), acidic (AAEEEAA), and basic (AAAKAAA). The neutral and acidic peptides form almost no 2+ ions in the absence of Cr(III). Twenty Cr(III) complexes were used as potential enhanced protonation reagents, including 11 complexes with nonlabile ligands and nine with labile ligands. The complexes that provide the most abundant [M + 2H]2+ , the greatest [M + 2H]2+ to [M + H]+ ratio, and the cleanest mass spectra are [Cr(H2 O)6 ](NO3 )3 ·3H2 O and [Cr(THF)3 ]Cl3 . Anions in Cr(III) reagents can also affect the intensity of [M + 2H]2+ and the [M + 2H]2+ to [M + H]+ ratio through cation-anion interactions. The influence of anions on the extent of peptide protonation follows the trend ClO4 - ˃ SO4 2- ˃ Br- ˃ Cl- ˃ F- ≈ NO3 - . Solvent effects and complexes with varying number of water ligands were investigated to study the importance of water in enhanced protonation. Aqueous solvent systems and Cr(III) complexes that have at least one bound water ligand in solution must be used for successful increase in the intensity of [M + 2H]2+ , which indicates that water is involved in the mechanism of Cr(III)-induced enhanced protonation. The ESI source design is also important because no enhanced protonation was observed using a Z-spray source. The current results suggest that this Cr(III)-induced effect occurs during the ESI desolvation process.
Collapse
Affiliation(s)
- Xinyao Jing
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| | - Kyle C Edwards
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| | - John B Vincent
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| | - Carolyn J Cassady
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama
| |
Collapse
|
2
|
Rappold BA. Special Considerations for Liquid Chromatography–Tandem Mass Spectrometry Method Development. Clin Lab Med 2018; 38:539-551. [DOI: 10.1016/j.cll.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Schmitz EM, Leijten NM, van Dongen JL, Broeren MA, Milroy LG, Brunsveld L, Scharnhorst V, van de Kerkhof D. Optimizing charge state distribution is a prerequisite for accurate protein biomarker quantification with LC-MS/MS, as illustrated by hepcidin measurement. ACTA ACUST UNITED AC 2018; 56:1490-1497. [DOI: 10.1515/cclm-2018-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
Abstract
Background:
Targeted quantification of protein biomarkers with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has great potential, but is still in its infancy. Therefore, we elucidated the influence of charge state distribution and matrix effects on accurate quantification, illustrated by the peptide hormone hepcidin.
Methods:
An LC-MS/MS assay for hepcidin, developed based on existing literature, was improved by using 5 mM ammonium formate buffer as mobile phase A and as an elution solution for solid phase extraction (SPE) to optimize the charge state distribution. After extensive analytical validation, focusing on interference and matrix effects, the clinical consequence of this method adjustment was studied by performing receiving operating characteristic (ROC)-curve analysis in patients with iron deficiency anemia (IDA, n=44), anemia of chronic disease (ACD, n=42) and non-anemic patients (n=93).
Results:
By using a buffered solution during sample preparation and chromatography, the most abundant charge state was shifted from 4+ to 3+ and the charge state distribution was strongly stabilized. The matrix effects which occurred in the 4+ state were therefore avoided, eliminating bias in the low concentration range of hepcidin. Consequently, sensitivity, specificity and positive predictive value (PPV) for detection of IDA patients with the optimized assay (96%, 97%, 91%, respectively) were much better than for the original assay (73%, 70%, 44%, respectively).
Conclusions:
Fundamental improvements in LC-MS/MS assays greatly impact the accuracy of protein quantification. This is urgently required for improved diagnostic accuracy and clinical value, as illustrated by the validation of our hepcidin assay.
Collapse
Affiliation(s)
- Ellen M.H. Schmitz
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Catharina Hospital Eindhoven , Clinical Laboratory , Eindhoven , The Netherlands
- Eindhoven University of Technology , Department of Biomedical Engineering , Laboratory of Chemical Biology and Institute for Complex Molecular Systems , Eindhoven , The Netherlands
- Máxima Medical Center Veldhoven , Clinical Laboratory , Veldhoven , The Netherlands
| | - Niels M. Leijten
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Catharina Hospital Eindhoven , Clinical Laboratory , Eindhoven , The Netherlands
- Eindhoven University of Technology , Department of Biomedical Engineering , Laboratory of Chemical Biology and Institute for Complex Molecular Systems , Eindhoven , The Netherlands
| | - Joost L.J. van Dongen
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Eindhoven University of Technology , Department of Biomedical Engineering , Laboratory of Chemical Biology and Institute for Complex Molecular Systems , Eindhoven , The Netherlands
| | - Maarten A.C. Broeren
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Máxima Medical Center Veldhoven , Clinical Laboratory , Veldhoven , The Netherlands
| | - Lech G. Milroy
- Eindhoven University of Technology , Department of Biomedical Engineering , Laboratory of Chemical Biology and Institute for Complex Molecular Systems , Eindhoven , The Netherlands
| | - Luc Brunsveld
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Eindhoven University of Technology , Department of Biomedical Engineering , Laboratory of Chemical Biology and Institute for Complex Molecular Systems , Eindhoven , The Netherlands
| | - Volkher Scharnhorst
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Catharina Hospital Eindhoven , Clinical Laboratory , Eindhoven , The Netherlands
- Eindhoven University of Technology , Department of Biomedical Engineering , Laboratory of Chemical Biology and Institute for Complex Molecular Systems , Eindhoven , The Netherlands
| | - Daan van de Kerkhof
- Expert Center Clinical Chemistry Eindhoven , Eindhoven , The Netherlands
- Catharina Hospital Eindhoven , Clinical Laboratory , Eindhoven , The Netherlands
- Algemeen Klinisch Laboratorium Catharina Ziekenhuis , Michelangelolaan 2 , 5623 EJ Eindhoven , The Netherlands
| |
Collapse
|
4
|
Li J, Santambrogio C, Brocca S, Rossetti G, Carloni P, Grandori R. Conformational effects in protein electrospray-ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:111-22. [PMID: 25952139 DOI: 10.1002/mas.21465] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/14/2015] [Indexed: 05/11/2023]
Abstract
Electrospray-ionization mass spectrometry (ESI-MS) is a key tool of structural biology, complementing the information delivered by conventional biochemical and biophysical methods. Yet, the mechanism behind the conformational effects in protein ESI-MS is an object of debate. Two parameters-solvent-accessible surface area (As) and apparent gas-phase basicity (GBapp)-are thought to play a role in controlling the extent of protein ionization during ESI-MS experiments. This review focuses on recent experimental and theoretical investigations concerning the influence of these parameters on ESI-MS results and the structural information that can be derived. The available evidence supports a unified model for the ionization mechanism of folded and unfolded proteins. These data indicate that charge-state distribution (CSD) analysis can provide valuable structural information on normally folded, as well as disordered structures.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057 Aachen, Germany
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
5
|
Hewavitharana AK, Darch KM, Shaw PN. Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometric Determination of Creatinine in Human Urine. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.848363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Application and challenges in using LC–MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery. Bioanalysis 2014; 6:859-79. [DOI: 10.4155/bio.14.36] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As more protein therapeutics enter the drug-discovery pipeline, the traditional ligand-binding assay (LBA) faces additional challenges to meet the rapid and diverse bioanalytical needs in the early drug-discovery stage. The high specificity and sensitivity afforded by LC–MS, along with its rapid method development, is proving invaluable for the analysis of protein therapeutics in support of drug discovery. LC–MS not only serves as a quantitative tool to complement LBA in drug discovery, it also provides structural details at a molecular level, which are used to address issues that cannot be resolved using LBA alone. This review will describe the key benefits and applications, as well as the techniques and challenges for applying LC–MS to support protein quantification in drug discovery.
Collapse
|
7
|
Abstract
The peptide hormone glucagon plays an important role in homeostasis of glucose concentrations in the blood. Its biological importance is evidenced through the conservation of its peptide sequence between species. Reliable assays for glucagon in biological samples are important for gaining a better understanding of the pathology and treatment of diabetes. Numerous assays are available for the analysis of glucagon in biological samples, the majority of which employ an immunochemical approach and have been available for many years. However, recent advances in MS instrumentation and the amenability of glucagon for analysis by LC–MS/MS has brought these new methods to the forefront. Concentrations of glucagon determined from different methods are not always consistent and this review provides suggestions of how to improve the reliability of methods for glucagon analysis.
Collapse
|
8
|
Testa L, Brocca S, Santambrogio C, D'Urzo A, Habchi J, Longhi S, Uversky VN, Grandori R. Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e25068. [PMID: 28516012 PMCID: PMC5424789 DOI: 10.4161/idp.25068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) exert key biological functions but tend to escape identification and characterization due to their high structural dynamics and heterogeneity. The possibility to dissect conformational ensembles by electrospray-ionization mass spectrometry (ESI-MS) offers an attracting possibility to develop a signature for this class of proteins based on their peculiar ionization behavior. This review summarizes available data on charge-state distributions (CSDs) obtained for IDPs by non-denaturing ESI-MS, with reference to globular or chemically denatured proteins. The results illustrate the contributions that direct ESI-MS analysis can give to the identification of new putative IDPs and to their conformational investigation.
Collapse
Affiliation(s)
- Lorenzo Testa
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Johnny Habchi
- Aix-Marseille Université; CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB); Marseille, France
| | - Sonia Longhi
- Aix-Marseille Université; CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB); Marseille, France
| | - Vladimir N Uversky
- Department of Molecular Medicine; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| | - Rita Grandori
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| |
Collapse
|
9
|
Consta S, Malevanets A. Classification of the ejection mechanisms of charged macromolecules from liquid droplets. J Chem Phys 2013; 138:044314. [DOI: 10.1063/1.4789018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Simon R, Enjalbert Q, Biarc J, Lemoine J, Salvador A. Evaluation of hydrophilic interaction chromatography (HILIC) versus C₁₈ reversed-phase chromatography for targeted quantification of peptides by mass spectrometry. J Chromatogr A 2012; 1264:31-9. [PMID: 23073287 DOI: 10.1016/j.chroma.2012.09.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Hydrophilic-interaction liquid chromatography (HILIC) is a widely used technique for small polar molecule analysis and offers the advantage of improved sensitivity in mass spectrometry. Although HILIC is today frequently employed as an orthogonal fractionation method for peptides during the proteomic discovery phase, it is still seldom considered for quantification. In this study, the performances in terms of peak capacity and sensitivity of 3 HILIC columns were compared to traditional reversed phase liquid C(18) column in the context of targeted quantification of proteotypic peptides using selected reaction monitoring mode (SRM). The results showed that the maximum sensitivity in HILIC chromatography was achieved by using an amide column without salt buffer and that the signal increased compared to classic reversed phase chromatography. However, the intensity improvement is quite low compared to the one obtained for small molecules. This is due on one hand to a higher matrix effect in HILIC and on the other hand to a change of charge states of peptides in organic solvent (doubly charged to monocharged). The doubly charged ions can be more readily dissociated than singly charged ions, making them ideal for SRM peptide quantification. As a result "supercharging" reagents are added to the mobile phase to shift from predominant singly charged ions to the more favorable doubly charged species. Using such optimized conditions, peptide signal is improved by a factor of between two and ten for 88% of the peptides of the 81 peptides investigated.
Collapse
Affiliation(s)
- Romain Simon
- UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, France
| | | | | | | | | |
Collapse
|
11
|
Chung JK, Consta S. Release Mechanisms of Poly(ethylene glycol) Macroions from Aqueous Charged Nanodroplets. J Phys Chem B 2012; 116:5777-85. [DOI: 10.1021/jp301577b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jun Kyung Chung
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|