1
|
Neves GWP, Curty NDA, Kubitschek-Barreira PH, Fontaine T, Souza GHMF, Cunha ML, Goldman GH, Beauvais A, Latgé JP, Lopes-Bezerra LM. Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates HUVEC proteins related to inflammatory and stress responses. J Proteomics 2016; 151:83-96. [PMID: 27321585 DOI: 10.1016/j.jprot.2016.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus, the main etiologic agent causing invasive aspergillosis, can induce an inflammatory response and a prothrombotic phenotype upon contact with human umbilical vein endothelial cells (HUVECs). However, the fungal molecules involved in this endothelial response remain unknown. A. fumigatus hyphae produce an extracellular matrix composed of galactomannan, galactosaminogalactan and α-(1,3)-glucan. In this study, we investigated the consequences of UGM1 gene deletion in A. fumigatus, which produces a mutant with increased galactosaminogalactan production. The ∆ugm1 mutant exhibited an HUVEC-hyperadhesive phenotype and induced increased endothelial TNF-α secretion and tissue factor mRNA overexpression in this "semi-professional" immune host cell. Using a shotgun proteomics approach, we show that the A. fumigatus ∆ugm1 strain can modulate the levels of proteins in important endothelial pathways related to the inflammatory response mediated by TNF-α and to stress response pathways. Furthermore, a purified galactosaminogalactan fraction was also able to induce TNF-α secretion and the coincident HUVEC pathways regulated by the ∆ugm1 mutant, which overexpresses this component, as demonstrated by fluorescence microscopy. This work contributes new data regarding endothelial mechanisms in response to A. fumigatus infection. SIGNIFICANCE Invasive aspergillosis is the main opportunistic fungal infection described in neutropenic hematologic patients. One important clinical aspect of this invasive fungal infection is vascular thrombosis, which could be related, at least in part, to the activation of endothelial cells, as shown in previous reports from our group. It is known that direct contact between the A. fumigatus hyphal cell wall and the HUVEC cell surface is necessary to induce an endothelial prothrombotic phenotype and secretion of pro-inflammatory cytokines, though the cell surface components of this angioinvasive fungus that trigger this endothelial response are unknown. The present work employs a discovery-driven proteomics approach to reveal the role of one important cell wall polysaccharide of A. fumigatus, galactosaminogalactan, in the HUVEC interaction and the consequent mechanisms of endothelial activation. This is the first report of the overall panel of proteins related to the HUVEC response to a specific and purified cell wall component of the angioinvasive fungus A. fumigatus.
Collapse
Affiliation(s)
- Gabriela Westerlund Peixoto Neves
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Nathália de Andrade Curty
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Paula Helena Kubitschek-Barreira
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Thierry Fontaine
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | | | - Marcel Lyra Cunha
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Gustavo H Goldman
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Av. do Cafe S/N, Monte Alegre, CEP:14040-903, Ribeirao Preto, SP, Brazil
| | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Abstract
Selected reaction monitoring (SRM) has a long history of use in the area of quantitative MS. In recent years, the approach has seen increased application to quantitative proteomics, facilitating multiplexed relative and absolute quantification studies in a variety of organisms. This article discusses SRM, after introducing the context of quantitative proteomics (specifically primarily absolute quantification) where it finds most application, and considers topics such as the theory and advantages of SRM, the selection of peptide surrogates for protein quantification, the design of optimal SRM co-ordinates and the handling of SRM data. A number of published studies are also discussed to demonstrate the impact that SRM has had on the field of quantitative proteomics.
Collapse
|