1
|
Khojasteh SC, Argikar UA, Chatzopoulou M, Cheruzel L, Cho S, Dhaware D, Johnson KM, Kalgutkar AS, Liu J, Ma B, Maw H, Rowley JA, Seneviratne HK, Wang S. Biotransformation research advances - 2023 year in review. Drug Metab Rev 2024; 56:190-222. [PMID: 38989688 DOI: 10.1080/03602532.2024.2370330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
This annual review marks the eighth in the series starting with Baillie et al. (2016) Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation. Its format is to highlight important aspects captured in synopsis followed by a commentary with relevant figure and references.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Maria Chatzopoulou
- Early Clinical Development and Translational Science, UCB Biopharma UK, Slough, UK
| | - Lionel Cheruzel
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | | | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, MD Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Hlaing Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Jessica A Rowley
- Early Clinical Development and Translational Science, UCB Biopharma UK, Slough, UK
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
2
|
Miao X, Dear GJ, Beaumont C, Vitulli G, Collins G, Gorycki PD, Harrell AW, Sakatis MZ. Cyanide Trapping of Iminium Ion Reactive Metabolites: Implications for Clinical Hepatotoxicity. Chem Res Toxicol 2024; 37:698-710. [PMID: 38619497 DOI: 10.1021/acs.chemrestox.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.
Collapse
Affiliation(s)
- Xiusheng Miao
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Gordon J Dear
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Giovanni Vitulli
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gary Collins
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D Gorycki
- Drug Metabolism and Pharmacokinetics, GSK, Collegeville, Pennsylvania 19426, United States
| | - Andrew W Harrell
- Drug Metabolism and Pharmacokinetics, GSK, Stevenage, Hertfordshire SG1 2NY, U.K
| | | |
Collapse
|
3
|
Kwak YB, Seo JI, Yoo HH. Exploring Metabolic Pathways of Anamorelin, a Selective Agonist of the Growth Hormone Secretagogue Receptor, via Molecular Networking. Pharmaceutics 2023; 15:2700. [PMID: 38140041 PMCID: PMC10747546 DOI: 10.3390/pharmaceutics15122700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we delineated the poorly characterized metabolism of anamorelin, a growth hormone secretagogue receptor agonist, in vitro using human liver microsomes (HLM), based on classical molecular networking (MN) and feature-based molecular networking (FBMN) from the Global Natural Products Social Molecular Networking platform. Following the in vitro HLM reaction, the MN analysis showed 11 neighboring nodes whose information propagated from the node corresponding to anamorelin. The FBMN analysis described the separation of six nodes that the MN analysis could not achieve. In addition, the similarity among neighboring nodes could be discerned via their respective metabolic pathways. Collectively, 18 metabolites (M1-M12) were successfully identified, suggesting that the metabolic pathways involved were demethylation, hydroxylation, dealkylation, desaturation, and N-oxidation, whereas 6 metabolites (M13a*-b*, M14a*-b*, and M15a*-b*) remained unidentified. Furthermore, the major metabolites detected in HLM, M1 and M7, were dissimilar from those observed in the CYP3A4 isozyme assay, which is recognized to be markedly inhibited by anamorelin. Specifically, M7, M8, and M9 were identified as the major metabolites in the CYP3A4 isozyme assay. Therefore, a thorough investigation of metabolism is imperative for future in vivo studies. These findings may offer prospective therapeutic opportunities for anamorelin.
Collapse
Affiliation(s)
- Young Beom Kwak
- Korea Racing Authority, Gwachon 13822, Republic of Korea;
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea;
| | - Jeong In Seo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea;
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea;
| |
Collapse
|
4
|
Khairy M, Khorshed AA. Simultaneous voltammetric determination of two binary mixtures containing propranolol in pharmaceutical tablets and urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Usai EM, Manca I, Pettinau F, Mastino A, Pittau B. Chemical Characterization and in vitro
Metabolism of a Novel Class of Delta Opioid Receptor Agonists, Analogs of SNC-80. ChemistrySelect 2019. [DOI: 10.1002/slct.201803906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elisabetta Maria Usai
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| | - Francesca Pettinau
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
- Department of Chemical; Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Barbara Pittau
- Institute of Translational Pharmacology; National Research Council; 09010 Pula (CA) Italy
| |
Collapse
|
6
|
Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift. Anal Bioanal Chem 2018; 410:3847-3857. [PMID: 29654341 DOI: 10.1007/s00216-018-1057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Candidate drugs that can be metabolically transformed into reactive electrophilic products, such as epoxides, quinones, and nitroso compounds, are of special concern because subsequent covalent binding to bio-macromolecules can cause adverse drug reactions, such as allergic reactions, hepatotoxicity, and genotoxicity. Several strategies have been reported for screening reactive metabolites, such as a covalent binding assay with radioisotope-labeled drugs and a trapping method followed by LC-MS/MS analyses. Of these, a trapping method using glutathione is the most common, especially at the early stage of drug development. However, the cysteine of glutathione is not the only nucleophilic site in vivo; lysine, histidine, arginine, and DNA bases are also nucleophilic. Indeed, the glutathione trapping method tends to overlook several types of reactive metabolites, such as aldehydes, acylglucuronides, and nitroso compounds. Here, we introduce an alternate way for screening reactive metabolites as follows: A mixture of the light and heavy isotopes of simplified amino acid motifs and a DNA motif is used as a biomimetic trapping cocktail. This mixture consists of [2H0]/[2H3]-1-methylguanidine (arginine motif, Δ 3 Da), [2H0]/[2H4]-2-mercaptoethanol (cysteine motif, Δ 4 Da), [2H0]/[2H5]-4-methylimidazole (histidine motif, Δ 5 Da), [2H0]/[2H9]-n-butylamine (lysine motif, Δ 9 Da), and [13C0,15N0]/[13C1,15N2]-2'-deoxyguanosine (DNA motif, Δ 3 Da). Mass tag triggered data-dependent acquisition is used to find the characteristic doublet peaks, followed by specific identification of the light isotope peak using MS/MS. Forty-two model drugs were examined using an in vitro microsome experiment to validate the strategy. Graphical abstract Biomimetic trapping cocktail to screen reactive metabolites.
Collapse
|
7
|
Attwa MW, Kadi AA, Darwish HW, Alrabiah H. LC-MS/MS reveals the formation of reactive ortho-quinone and iminium intermediates in saracatinib metabolism: Phase I metabolic profiling. Clin Chim Acta 2018; 482:84-94. [PMID: 29614307 DOI: 10.1016/j.cca.2018.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/17/2022]
Abstract
Saracatinib (AZD-0530) is a drug under clinical trials that developed by AstraZeneca. It is considered a dual kinase inhibitor, with selective actions as a Src inhibitor and a Bcr-Abl tyrosine-kinase inhibitor. Saracatinib chemical structure contains N-methyl piperazine group and 1,3 benzodioxole group. N-methyl piperazine group that can be bioactivated to form iminium intermediates which can be captured by KCN. 1,3-Benzodioxole group can be bioactivated to form ortho-quinone intermediate that can be conjugated with GSH. The formed conjugates are stable and can be identified using LC-MS/MS. In our current work, we are trying to give insight into the reasons that may be responsible for saracatinib side effects. Using LC-MS/MS, in vitro metabolic pathways were investigated for saracatinib in rat liver microsomes. Ten saracatinib phase I metabolites were characterized and the metabolic pathways were found to be hydroxylation, oxidation, reduction, dealkylation, N-oxidation and ether cleavage. Also, four potential reactive intermediates (three cyanide adducts and one GSH conjugate) were identified and the bioactivation mechanisms were explained. The existence of these four reactive metabolites may be the main reason for observed saracatinib side effects in clinical trials. Literature review showed no previous articles have been proposed the detailed structural identification of the formed reactive metabolites.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Haitham Alrabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Kadi AA, Attwa M, Darwish HW. LC-ESI-MS/MS reveals the formation of reactive intermediates in brigatinib metabolism: elucidation of bioactivation pathways. RSC Adv 2018; 8:1182-1190. [PMID: 35540908 PMCID: PMC9077137 DOI: 10.1039/c7ra10533a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022] Open
Abstract
Four phase I BGB metabolites and three cyano adducts for BGB were detected using LC-MS/MS. The piperidine ring was found to be responsible for BGB bioactivation and the bioactivation pathways are proposed.
Collapse
Affiliation(s)
- Adnan A. Kadi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Song Q, Zhang AH, Yan GL, Liu L, Wang XJ. Technological advances in current metabolomics and its application in tradition Chinese medicine. RSC Adv 2017. [DOI: 10.1039/c7ra02056b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the last few years, many metabolomics technologies have been established in biomedical research for analyzing the changes of metabolite levels.
Collapse
Affiliation(s)
- Qi Song
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau University of Science and Technology
- Macau
- China
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
10
|
Kadi AA, Amer S, Darwish HW, Attwa MW. LC-MS/MS reveals the formation of aldehydes and iminium reactive intermediates in foretinib metabolism: phase I metabolic profiling. RSC Adv 2017. [DOI: 10.1039/c7ra06341e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using LC-MS/MS, six phase I foretinib metabolites in addition to four potential reactive metabolites, two aldehydes and two iminium ions, were detected and the bioactivation pathways were proposed.
Collapse
Affiliation(s)
- Adnan A. Kadi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Sawsan M. Amer
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- Cairo 11562
- Egypt
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Kingdom of Saudi Arabia
| |
Collapse
|
11
|
|
12
|
Comparison of trapping profiles between d-peptides and glutathione in the identification of reactive metabolites. Toxicol Rep 2015; 2:1024-1032. [PMID: 28962444 PMCID: PMC5598498 DOI: 10.1016/j.toxrep.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 12/23/2022] Open
Abstract
Qualitative trapping profile of reactive metabolites arising from six structurally different compounds was tested with three different d-peptide isomers (Peptide 1, gly–tyr–pro–cys–pro–his-pro; Peptide 2, gly–tyr–pro–ala–pro–his–pro; Peptide 3, gly–tyr–arg–pro–cys–pro–his–lys–pro) and glutathione (GSH) using mouse and human liver microsomes as the biocatalyst. The test compounds were classified either as clinically “safe” (amlodipine, caffeine, ibuprofen), or clinically as “risky” (clozapine, nimesulide, ticlopidine; i.e., associated with severe clinical toxicity outcomes). Our working hypothesis was as follows: could the use of short different amino acid sequence containing d-peptides in adduct detection confer any add-on value to that obtained with GSH? All “risky” agents’ resulted in the formation of several GSH adducts in the incubation mixture and with at least one peptide adduct with both microsomal preparations. Amlodipine did not form any adducts with any of the trapping agents. No GSH and peptide 2 and 3 adducts were found with caffeine, but with peptide 1 one adduct with human liver microsomes was detected. Ibuprofen produced one Peptide 1-adduct with human and mouse liver microsomes but not with GSH. In conclusion, GSH still remains the gold trapping standard for reactive metabolites. However, targeted d-peptides could provide additional information about protein binding potential of electrophilic agents, but their clinical significance needs to be clarified using a wider spectrum of chemicals together with other safety estimates.
Collapse
|
13
|
Analytical challenges for conducting rapid metabolism characterization for QIVIVE. Toxicology 2015; 332:20-9. [DOI: 10.1016/j.tox.2013.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/22/2022]
|
14
|
Coupling ultra-high-pressure liquid chromatography with mass spectrometry for in-vitro drug-metabolism studies. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Men L, Zhao Y, Lin H, Yang M, Liu H, Tang X, Yu Z. Characterization of in vitro metabolites of TM-2, a potential antitumor drug, in rat, dog and human liver microsomes using liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2162-2170. [PMID: 25178720 DOI: 10.1002/rcm.7003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/22/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE TM-2 (13-(N-Boc-3-i-butylisoserinoyl-4,10-β-diacetoxy-2-α-benzoyloxy-5-β,20-epoxy-1,13-α-dihydroxy-9-oxo-19-norcyclopropa[g]tax-11-ene) is a novel semi-synthetic taxane derivative. Our previous study demonstrated that it is a promising taxane derivative. The in vitro comparative metabolic profile of a drug between animals and humans is a key issue that should be investigated at early stages of drug development to better select drug candidates. In this study, the in vitro metabolic pathways of TM-2 in rat, dog and human liver microsomes were established and compared. METHODS TM-2 was incubated with liver microsomes in the presence of NADPH. Two different types of mass spectrometers - a hybrid linear trap quadrupole orbitrap (LC/LTQ-Orbitrap) mass spectrometer and a triple-quadrupole tandem mass spectrometer (LC/QqQ) were employed to acquire structural information of TM-2 metabolites. Accurate mass measurement using LC/LTQ-Orbitrap was used to determine the accurate mass data and elemental compositions of metabolites thereby confirming the proposed structures of the metabolites. For the chemical inhibition study, selective P450 inhibitors were added to incubations to initially characterize the cytochrome P450 (CYP) enzymes involved in the metabolism of TM-2. RESULTS A total of 12 components (M1-M12) were detected and identified as the metabolites of TM-2 in vitro. M1-M5 were formed by hydroxylation of the taxane ring or the lateral chain. Hydroxylated products can be further oxidized to the dihydroxylated metabolites M6-M10. M11 was a trihydroxylated metabolite. M12 was tentatively identified as a carboxylic acid derivative. The metabolism of TM-2 is much the same in all three species with some differences. The chemical inhibition study initially demonstrated that the formation of M2, the major metabolite of TM-2, is mainly mediated by CYP3A4. CONCLUSIONS Hydroxylation is the major biotransformation of the TM-2 pathway in vitro. CYP3A4 may play a dominant role in the formation of M2 in liver microsomes. The knowledge of the metabolic pathways of TM-2 is important to support further research of TM-2.
Collapse
Affiliation(s)
- Lei Men
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China; Department of Food Analysis, Dalian Ocean School, 40 Linghe Street, Dalian, 116023, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Jia LL, Zhong ZY, Li F, Ling ZL, Chen Y, Zhao WM, Li Y, Jiang SW, Xu P, Yang Y, Hu MY, Liu L, Liu XD. The Aggravation of Clozapine-Induced Hepatotoxicity by Glycyrrhetinic Acid in Rats. J Pharmacol Sci 2014; 124:468-79. [DOI: 10.1254/jphs.13257fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Zhang M, Resuello CM, Guo J, Powell ME, Elmore CS, Hu J, Vishwanathan K. Contribution of artifacts to N-methylated piperazine cyanide adduct formation in vitro from N-alkyl piperazine analogs. Drug Metab Dispos 2013; 41:1023-34. [PMID: 23431111 DOI: 10.1124/dmd.112.050450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
In the liver microsome cyanide (CN)-trapping assays, piperazine-containing compounds formed significant N-methyl piperazine CN adducts. Two pathways for the N-methyl piperazine CN adduct formation were proposed: 1) The α-carbon in the N-methyl piperazine is oxidized to form a reactive iminium ion that can react with cyanide ion; 2) N-dealkylation occurs followed by condensation with formaldehyde and dehydration to produce N-methylenepiperazine iminium ion, which then reacts with cyanide ion to form the N-methyl CN adduct. The CN adduct from the second pathway was believed to be an artifact or metabonate. In the present study, a group of 4'-N-alkyl piperazines and 4'-N-[¹³C]methyl-labeled piperazines were used to determine which pathway was predominant. Following microsomal incubations in the presence of cyanide ions, a significant percentage of 4'-N-[¹³C]methyl group in the CN adduct was replaced by an unlabeled natural methyl group, suggesting that the second pathway was predominant. For 4'-N-alkyl piperazine, the level of 4'-N-methyl piperazine CN adduct formation was limited by the extent of prior 4'-N-dealkylation. In a separate study, when 4'-NH-piperaziens were incubated with potassium cyanide and [¹³C]-labeled formaldehyde, 4'-N-[¹³C]methyl piperazine CN-adduct was formed without NADPH or liver microsome suggesting a direct Mannich reaction is involved. However, when [¹³C]-labeled methanol or potassium carbonate was used as the one-carbon donor, 4'-N-[¹³C]methyl piperazine CN adduct was not detected without liver microsome or NADPH present. The biologic and toxicological implications of bioactivation via the second pathway necessitate further investigation because these one-carbon donors for the formation of reactive iminium ions could be endogenous and readily available in vivo.
Collapse
Affiliation(s)
- Minli Zhang
- Drug Metabolism and Pharmacokinetics, AstraZeneca Pharmaceuticals, 35 Gatehouse Dr., Waltham, MA 02451, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Barbara JE, Kazmi F, Muranjan S, Toren PC, Parkinson A. High-resolution mass spectrometry elucidates metabonate (false metabolite) formation from alkylamine drugs during in vitro metabolite profiling. Drug Metab Dispos 2012; 40:1966-75. [PMID: 22798552 DOI: 10.1124/dmd.112.047027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro metabolite profiling and characterization experiments are widely employed in early drug development to support safety studies. Samples from incubations of investigational drugs with liver microsomes or hepatocytes are commonly analyzed by liquid chromatography/mass spectrometry for detection and structural elucidation of metabolites. Advanced mass spectrometers with accurate mass capabilities are becoming increasingly popular for characterization of drugs and metabolites, spurring changes in the routine workflows applied. In the present study, using a generic full-scan high-resolution data acquisition approach with a time-of-flight mass spectrometer combined with postacquisition data mining, we detected and characterized metabonates (false metabolites) in microsomal incubations of several alkylamine drugs. If a targeted approach to mass spectrometric detection (without full-scan acquisition and appropriate data mining) were employed, the metabonates may not have been detected, hence their formation underappreciated. In the absence of accurate mass data, the metabonate formation would have been incorrectly characterized because the detected metabonates manifested as direct cyanide-trapped conjugates or as cyanide-trapped metabolites formed from the parent drugs by the addition of 14 Da, the mass shift commonly associated with oxidation to yield a carbonyl. This study demonstrates that high-resolution mass spectrometry and the associated workflow is very useful for the detection and characterization of unpredicted sample components and that accurate mass data were critical to assignment of the correct metabonate structures. In addition, for drugs containing an alkylamine moiety, the results suggest that multiple negative controls and chemical trapping agents may be necessary to correctly interpret the results of in vitro experiments.
Collapse
|
19
|
Zhu W, Yuan Y, Zhou P, Zeng L, Wang H, Tang L, Guo B, Chen B. The expanding role of electrospray ionization mass spectrometry for probing reactive intermediates in solution. Molecules 2012; 17:11507-37. [PMID: 23018925 PMCID: PMC6268401 DOI: 10.3390/molecules171011507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022] Open
Abstract
Within the past decade, electrospray ionization mass spectrometry (ESI-MS) has rapidly occupied a prominent position for liquid-phase mechanistic studies due to its intrinsic advantages allowing for efficient "fishing" (rapid, sensitive, specific and simultaneous detection/identification) of multiple intermediates and products directly from a "real-world" solution. In this review we attempt to offer a comprehensive overview of the ESI-MS-based methodologies and strategies developed up to date to study reactive species in reaction solutions. A full description of general issues involved with probing reacting species from complex (bio)chemical reaction systems is briefly covered, including the potential sources of reactive intermediate (metabolite) generation, analytical aspects and challenges, basic rudiments of ESI-MS and the state-of-the-art technology. The main purpose of the present review is to highlight the utility of ESI-MS and its expanding role in probing reactive intermediates from various reactions in solution, with special focus on current progress in ESI-MS-based approaches for improving throughput, testing reality and real-time detection by using newly developed MS instruments and emerging ionization sources (such as ambient ESI techniques). In addition, the limitations of modern ESI-MS in detecting intermediates in organic reactions is also discussed.
Collapse
Affiliation(s)
- Weitao Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Yu Yuan
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China;
| | - Peng Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Le Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Hua Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| |
Collapse
|